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7. Single Variable Comparative Statics Analysis and the Envelop Theorem

Recall the unconstrained maximization problem, maxxf(x), that we studied in
section 2.  The function f is the economic agent's objective function  that he or she is
trying to maximize and x is the agent's decision or choice variable.  We shall now
complicate matters by assuming that the objective function f also depends on a
variable "a" that cannot be controlled by the economic agent.  Thus the objective
function that is to be maximized with respect to x is now f(x, a).

For an example of such a function, consider the f defined by (5) in section 3:
there, "a" could be p1, p2, I or a.  In general, economists are interested in knowing
how the optimal x responds  to a change in the signal, "a".

Our maximization problem may now be written as:

(1) maxx f(x, a).

Assuming that f is differentiable, the first order necessary condition for solving
(1) is:

(2) f1(x, a) = 0.

We suppose that for an initial "a", the solution to (1) is x* = g(a) and so we have

(3) f1[g(a), a] = 0.

We also assume that the second order sufficient condition for solving (1) is
satisfied at x*:

(4) f11[g(a), a] < 0.

Equation (2) may be solved for x = g(a) and if we knew f precisely, we could
determine this solution function g.  However, in many cases, we may not know f
very accurately, but we may know the signs of the partial derivatives of f up to
say the second order (again, recall example 1 in section 3).  Under these
conditions, we can determine how x = g(a) changes as a changes; more
specifically, we can determine the slope of the response function, dx/da = g¢(a),
as follows.  Simply differentiate both sides of equation (3) with respect to a, using
the composite function chain rule developed in the previous section.  We obtain
the following equation:

(5) f11[g(a), a] g¢(a) + f12[g(a), a]1 = 0

(6) or g¢(a) = -f12[g(a),a] / f11[g(a), a].
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Thus the response of x to a small change in a hinges on the sign of the second
order (cross) partial derivative of the objective function, f12[g(a), a] = f12(x*, a):  if
this derivative is positive, then the optimal x* will increase as a increases; if f12 is
negative , then the optimal x* will decrease as a increases.  To deduce this rule,
we used the second order condition (4).

This is a rather amazing qualitative result and we will see several concrete
applications of it later in the course.  This qualitative result is an example of
comparative statics analysis.

There is one additional result that we wish to derive in this section.  Define the
optimized objective function as a function of the signal or stimulus variable "a" by

(7) h(a) ≡ maxx f(x, a)

(8)         = f[g(a), a]

Now differentiate (8) with respect to "a" using our multivariate chain rule:

(9) h¢(a) = f1[g(a), a]g¢(a) + f2[g(a), a]
= 0 g¢(a) + f2[g(a), a] using (3)
= f2[g(a), a].

Thus to determine the slope of the optimized objective function with respect to
"a", we need only partially differentiate f(x*, a) with respect to its second variable
"a".  The result (9) is known as the envelop  theorem.

The results in this section were first derived by the famous American economist,
Paul Samuelson, in his book, Foundations of Economic Analysis, 1947.

Note that the only difficult mathematical result that was required to derive all of
this was the Theorem in section 6.

8. The Geometry of Single Variable Comparative Statics Analysis

Consider the following initial unconstrained maximization problem where the
value of the parameter a is a1:

(1) maxx{f(x, a1):  -• < x < + •}.

Suppose x1 = g(a1) solves (1) and we have

(2) f1(x1, a1) = 0;

(3) f11(x1, a1) < 0.
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Now consider problem (1) when a1 is increased by Da to a2 = a1 + Da where a2 >
a1.  We suppose x2 = g(a2) solves the new problem and we have:

(4) f1(x2, a2) = 0;

(5) f11(x2, a2) < 0

where (5) will follow from (3) and the continuity of f11 if Da is sufficiently small.

We can illustrate graphically the unconstrained maximization problem (1) by
plotting y = f(x, a1) as a function of x, holding a1 fixed.  The geometry of this
maximization problem is illustrated in Figure 4 below; see the lower of the two
graphs.  We can also illustrate the second maximization problem when a1 is
replaced by a2 by plotting y = f(x, a2) as a function of x; see the higher graph in
Figure 1 below.
     y

Figure 4:  f12(x1, a1) > 0.
                                                                         Slope is f1(x2, a2) = 0

                                                                          Slope is f1(x1, a1) = 0
                                                                              y = f(x, a1)

                                                                              Slope is f1(x1, a2) > 0

                                                                             y = f(x, a2)

                            x1             x2                                                x
As we increase a from a1 to a2 holding x1 fixed, the slope f1(x1, a) increases from
0 to the positive number f1 = (x1, a2).  Thus f12(x1, a1) will be positive and x2 =
g(a2) will be greater than x1 = g(a1); i.e., g¢(a1) = dx*(a1)/da > 0.

Figure 5 below illustrates the case where f12(x1, a1) = 0 and x1 = x2 and g¢(a1) = 0
while Figure 6 illustrates the case where f12(x1, a1) < 0, x2 < x1 and g¢(a1) < 0.

Figure 5:  f12(x1, a1) = 0 Figure 6:  f12(x1, a1) < 0.
y                                                                                     y

                                                       y = f(x ,a2)
f1(x2,a2)=0

y=f(x,a1)

                                                       y = f(x ,a1)
y=f(x,a2)
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                   x1 =x2                                                                                                                  x2                                    x1

Thus the sign of the derivative f12(x1, a1) tells us whether the optimal x increases
or decreases as a increases.

Application to Producer Supply and Demand Functions

Suppose that the maximum output y that a producer can produce in a given time
period using the positive amount of input x is

(6) y = af(x)

where a > 0 is an efficiency parameter and f is a twice continuously differentiable
production function.  Given a positive price for a unit of output, p > 0, and a
positive input price, w > 0, we assume that the producer solves the following
profit maximization problem:

(7) maxy, x{py - wx:  y = af(x)} ≡ p(p, w, a).

We can use the constraint to eliminate y from the objective function and we
obtain the following unconstrained maximization problem that is equivalent to
(7):

(8) maxx{paf(x) - wx} ≡ p(p, w, a).

We assume that the solution x* to (8) satisfies:

(9) paf¢(x*) - w = 0;

(10) paf¢¢(x*)      < 0.

Now regard x* as a function of p, w and a, say x* = d(p, w, a).  To determine
how the demand for input changes as the output price p increases, replace x* in
(9) by d(p, w, a) and differentiate the resulting equation with respect to p.  Doing
this differentiation using normal calculus rules (treating w and a as constants),
we obtain the following equation:

(11) af¢[d(p, w, a)] + paf¢¢[d(p, w, a)] 
  
∂d
∂p

(p, w, a) = 0 or

(12)
  
∂d
∂p

 (p, w, a) = -af¢(x*)/paf¢¢(x*)

= - f¢(x*)/pf¢¢(x*)
= (-)(+)/(+)(-) using (9) and (10)
> 0.
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Thus input demand increases as the output price increases.

To obtain the response of optimal output y* to an increase in the output price, we
use the constraint in (7) to define optimal output y* in terms of the optimal input
x*; i.e., define the optimal supply function s(p, w, a) as

(13) s(p, w, a) ≡ a f[d(p, w, a)].

Now partially differentiate (13) with respect to p and use (12) to determine the
derivative ∂d(p, w, a)/∂p:

(14)
  
∂s
∂p

 (p, w, a) = af¢[d(p, w, a)]
  
∂d
∂p

(p, w, a)

= af¢(x*) (-f¢(x*)/pf¢¢(x*))
= -a [f¢(x*)]2/pf¢¢(x*)
= (-) (+) (+)/(+)(-) using (9) and (10)
> 0.

Thus output supply increases as the output price increases.

To determine how the optimized objective function p(p, w, a) changes as p
increases, we need only differentiate p defined by (15) with respect to p:

(15) p(p, w, a) ≡ paf[d(p, w, a)] - wd(p, w, a).

Partially differentiating (15) with respect to p yields:

  
∂p

∂p
 (p, w, a) = af(x*) + [paf¢(x*) - w] 

  
∂d
∂p

(p, w, a)

(16) = af(x*) = s(p, w, a) using (9).

We could have obtained result (16) by using the Envelop Theorem:  replace f(x, a)
by

(17) F(x, p) ≡ paf(x) - wx;

replace x* = g(a) by x* = d(p); replace a by p; and replace h(a) by p(p) where

(18) p(p) ≡ maxx{F(x, p)}.

The Envelop Theorem tells us that

(19) p¢(p) = F2(x*, p) = af(x*)

which is (16).
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Problems

1. Adapt the above methodology to obtain formulae for the derivatives ∂d(p,
w, a)/∂w, ∂d(p, w, a)/∂a, ∂s(p, w, a)/∂w and ∂s(p, w, a)/∂a.  Sign these
derivatives.

2. Show that ∂p(p, w, a)/∂w = -d(p, w, a) (Hotelling's Lemma).

3. Show that ∂s(p, w, a)/∂w = -∂d(p, w, a)/∂p (Hotelling Symmetry
Condition).

4. Calculate the consumer's system of demand functions D1(p1, p2, I) and D2
(p1, p2, I) if the consumer's utility function is defined by:

(i) u(x1, x2) ≡ f   [x1
1
2 x2

1
2 ]

where f is a continuously differentiable function of one variable which has
f¢(x) > 0 for all x > 0.

5. Solve maxx {f(x):  x ≥ 0} for the following functions f:

(a)  f(x) ≡ -x2 + 2x - 2
(b)  f(x) ≡ ln x - x + 1
(c)  f(x) ≡ -x2 - 2x.

Check the relevant second order conditions.

6. Solve maxx1, x2{(f(x1, x2)} for the following f:

(a)  f(x1, x2) ≡ -   x1
2  + x1x2 -   x2

2  + 2;
(b)  f(x1, x2) ≡% ln x1 + ln x2 - 2x1 - 2x2 + 2.

Check the relevant second order conditions.

9. The Directional Derivative and First Order Necessary Conditions.

Let f(x1, x2, . . ., xN) be a function of N variables.  In order to define the
directional derivative of f, we first need to define a direction.

Definition 1:  A direction v is defined to be N numbers v1, v2, . . ., vN whose
squared components sum to 1; i.e., v2

1  + v2
2  + . . . + v2

N  = 1.  Thus a direction v ≡

(v1, v2, . . ., vN) in N dimensional space is a point on the sphere of radius 1 with
center at the origin.
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Definition 2:  The direction derivative of the function f evaluated at the point
(x1, x2, . . ., xN) in the direction v, denoted as Dvf(x1, x2, . . ., xN), is defined as the
following limit (if it exists):

(1) Dvf(x1, x2, . . ., xN) ≡ limtÆ0
    
f(x1 + tv1,K ,xN + tvN ) - f(x1,K ,xN )

t

Geometric Interpretation?

Let ei  ≡ (0, . . ., 0, 1, 0, . . ., 0) denote the point in N dimensional space which has
ith coordinate equal to 1 and all other coordinates equal to zero.  (This is often
called the ith unit vector in matrix algebra).

Suppose we chose our direction v to be ei .  Then using definition 1, it can be seen
that

(2) Dei f(x1, x2, . . ., xN) = fi(x1, x2, . . ., xN)

where fi denotes the ith first order partial derivative of f.  Thus partial derivatives
are special cases of the directional derivative:  the ith partial derivative is equal to
the directional derivative in the direction given by the ith coordinate axis.

Example:  Let f(x1, x2) = x2
1   + x2 and v = (1/ 2 , 1/ 2 ) = (2  

-1
2 , 2  

-1
2 )

D  (2
-1
2 ,2

-1
2 )  f(x1, x2) ≡ lim tÆ0 [f(x1 + t2  

-1
2 , x2 + t2  

-1
2 ) - f(x1, x2)] / t

= lim tÆ0 [(x1 + 2  
-1
2 t)2 + (x2 + 2  

-1
2 t) - (x2

1   + x2)] / t

= lim tÆ0 [x2
1   + 2  

1- 1
2 tx1 + 2-1t2) + (x2 + 2  

-1
2 t) -x2

1  - x2] / t

= lim tÆ0 [2  
1
2 tx1 + 2-1t2 + 2  

-1
2 t] / t

= lim tÆ0 [2  
1
2 x1 + 2-1t + 2  

-1
2 ]

(3) = 2  
1
2 x1 + 2  

-1
2

The above example shows that it is not very easy to calculate a directional
derivative in general.  This contrasts to the case of partial derivatives where
ordinary calculus rules for differentiation could be used.  Thus we need an easier
way for calculating directional derivatives, and the following Theorem does this
for us.

First Order Directional Derivative Theorem.  If the first order partial derivatives of f
exist and are continuous functions in a neighbourhood around the point
x1, x2, . . ., xN, then the directional derivative of f evaluated at x1, . . ., xN for any
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direction v ≡ (v1, v2, . . ., vN) exists and is given by the following weighted sum
of partial derivatives:

(4) Dvf(x1, x2, . . ., xN) =   S i=1
N vifi(x1, x2, . . ., xN)

= v1f1(x1, . . ., xN) + v2f2(x1, . . ., xN) + . . . + vNfN(x1, . . ., xN).

Proof:  For simplicity, we prove the result for the case where N = 2.  The general
case may be proven in a similar manner.

By the definitional of the directional derivative, we have

Dvf(x1, x2) ≡ lim tÆ0 [f(x1 + tv1, x2 + tv2) - f(x1, x2)] / t

= lim tÆ0 [f(x1 + tv1, x2 + tv2) - f(x1, x2 + tv2) + f(x1, x2 + tv2) - f(x1, x2)] / t

upon adding and subtracting the term f(x1, x2 + tv2)

= lim tÆ0 [f1(x*1 , x2 + tv2) (x1 + tv1 - x1) + f2(x1, x*2 )(x2 + tv2 - x2)] / t

applying the Mean Value Theorem twice where x*1  is between x1 + tv1 and x1
and x*2  is between x2 + tv2 and x2

= lim tÆ0 [f1(x*1 , x2 + tv2)v1 +  f2(x1, x*2 )v2

canceling terms involving t

= f1(x1, x2)v1 + f2(x1, x2)v2

taking limits and using the continuity of f1 and f2

= v1f1(x1, x2) + v2f2(x1, x2).
Q.E.D.

Example:  Let f(x1, x2) = x2
1   + x2 and v1 = 2  

-1
2 , v2 = 2  

-1
2 .

Then

Dvf(x1, x2) = v1f1(x1, x2) + v2f2(x1, x2)

= 2  
-1
2 2x1 + 2  

-1
2  • 1

= 2  
1
2 x1 + 2  

-1
2 which agrees with (3).
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Now that we have introduced the concept of the directional derivative, the
following condition for an interior max or min should be obvious.

First Order Necessary Conditions for f to attain a local interior max or min at
x1, x2, . . ., xN are:

(5) Dvf(x1, x2, . . ., xN) = 0 for every direction v = (v1, v2, . . ., vN).

If the regularity conditions for the First Order Directional Derivative Theorem
are satisfied, then by (4), conditions (5) are equivalent to:

(6)   S i=1
N  vifi(x1, x2, . . ., xN) = 0 for every v = (v1, v2, . . ., vN) such that   S i=1

N v2
i  = 1.

At first sight, conditions (5) and (6) may not seem to be of much practical value,
since as soon as N ≥ 2, we must check (5) and (6) for an infinite number of
directions v.  However, it is easy to verify that conditions (6) are equivalent to
our old first order necessary conditions, (3) in section 4, which we now rewrite as
conditions (7):

(7) ∂f(x1, x2, . . ., xN)/∂x1 ≡  f1(x1, x2, . . ., xN) = 0
  M    M    M

∂f(x1, x2, . . ., xN)/∂xN ≡ fN(x1, x2, . . ., xN) = 0

It is obvious that (7) implies (6).  To show that (6) implies (7), choose v to be the
unit vector ei for i = 1, 2, . . ., N.

The reader may well be a bit confused at this point.  Why did we bother to
introduce the concept of the directional derivative if in the end, we simply end
up with conditions (7), which we derived before using only the much simpler
concept of a partial derivative?

There are two answers to this questions:  (i)  if the partial derivative functions are
continuous, we now know that conditions (7) imply the seemingly much
stronger conditions (5), and (ii) in order to derive valid second order sufficient
conditions, we need the concept of the directional derivative.


