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10. Second Order Sufficient Conditions for a Maximum or Minimum

Before we can develop our second order conditions, we need to introduce the
concept of a second order directional derivative.  Suppose we are given a
direction v and the first order directional derivative in this direction exists for all
(x1, x2, . . ., xN) in a neighbourhood; i.e., D vf(x1, x2, . . ., xN) exists.  Now pick
another direction u ≡ (u1, u2, . . ., u2) where u2

1  + u2
2  + . . . + u2

N  = 1.

Definition:  The second order directional derivative of f in the directions v and u
evaluated at the point x1, x2, . . ., xN is defined as the following limit if it exists:

(1) Dvuf(x1, x2, . . ., xN) ≡ lim tÆ0 [Dvf(x1 + tu1, . . ., xN + tuN) -Dvf(x1, . . ., xN)] / t

[Geometric Interpretation?]

Note that if v = ei and u = ej, then Deiejf(x1, . . ., xN) = fij(x1, . . . , xN), the second
order partial derivative of f with respect to xi and xj.  For example, if N = 2,
v = (1, 0) and u = (0, 1), then Dvuf(x1, x2) = De1e2f(x1, x2) = f12(x1, x2) ≡ ∂2f(x1,
x2)/∂x1∂x2.  Recall that it is straightforward to compute second order partial
derivatives using ordinary calculus rules.  However, for general directions v and
u, it is not easy to compute Dvuf(x1, . . . , xN).

The following theorem allows us to express a general second order directional
derivative in terms of second order partial derivatives.

Second Order Directional Derivative Theorem.  If the first and second order partial
derivatives of f exist and are continuous in a neighbourhood around the point x1,
. . . , xN, then the second order directional derivative of f in the directions v = (v1,
. . . , vN) and u = (u1, . . ., uN) evaluated at x1, . . . , xN exists and may be
calculated as the following weighted sum of second order partial derivatives

(2) Dvuf(x1, . . . , xN) =   S i=1
N  

  
S j=1

N vifij(x1, . . ., xN)uj.

Proof:  For simplicity, we shall prove only the case where N = 2.  The general case
follows in an analogous manner.  By the definition of Dvuf(x1, x2), we have:

Dvuf(x1, x2) = lim tÆ0 [Dvf(x1 + tu1, x2 + tu2) - Dvf(x1, x2)] / t

=  lim tÆ0 [(v1f1(x1 + tu1, x2 + tu2) + v2f2(x1 + tu1, x2 + tu2))
- (v1f1(x1, x2) + v2f2(x1, x2)] / t

applying the First Order Directional Derivative Theorem to Dvf(x1 + tu1, x2 + tu2)
and Dvf(x1, x2)

= limtÆ0[(v1{f1(x1 + tu1, x2 + tu2) - f1(x1, x2)}
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+ v2{f2(x1 +tu1, x2 +tu2) - f2(x1, x2)}] / t

collecting terms involving v1 and v2

= lim tÆ0   S i=1
2 vi{fi(x1+ tu1, x2 + tu2) - fi(x1, x2)} / t

=   S i=1
2 viDufi(x1, x2)

by the definition of Dufi

=   S i=1
2 vi{  S j=1

2 ujfij(x1, x2)}

applying the First Order Directional Derivative Theorem to Duf1 and Duf2

=   S i=1
2

  S j=1
2  vjfij(x1, x2)uj rearranging terms

= v1f11(x1, x2)u1 + v1f12(x1, x2) u2+ v2f21(x1, x2)u1 + v2f22(x1, x2)u2

Q.E.D.

Assuming that our function f(x1, . . . , xN) has continuous second order partial
derivatives, we may now derive sufficient conditions for an interior local max or
min by applying our old one dimensional conditions to all possible directions.

Thus we have the following:

Second Order Sufficient Conditions for f to attain a strict local max:

(3) Dvf(x1, . . . , xN) = 0 for all directions v and

(4) Dvvf(x1, . . . , xN)  =
  
S i=1

N S j=1
N vifij(x1, . . . , xN)vj < 0

for all v such that v2
1  + . . . + v2

N  = 1

Second Order Sufficient Conditions for f to attain a strict local min at x1, . . . , xN:

(5) Dvf(x1, . . . , xN) = 0 for all directions v and
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(6) Dvvf(x1, . . . , xN) = 
  
S i=1

N S j=1
N vifij(x1, . . . , xN)vj > 0

for all v such that v2
1  + . . . + v2

N  = 1.

We indicated in the previous section, that conditions (3) or (5) are equivalent to
the following first order necessary conditions which can readily be verified:

(7) fi(x1, . . . , xN) = 0, i = 1, . . ., N

However, if N ≥ 2, then conditions (4) and (6) involve checking an infinite
number of inequalities, which is not practical.  Hence we need to convert
conditions (4) and (6) into equivalent sets of conditions that can be checked.  This
task is accomplished in courses in matrix algebra and we will not attempt to do it
here for the general case.  However, we shall do the case where N = 2.  We first,
require a preliminary result.  We state it for N = 2, but it is valid for a general N.

Young's Theorem.  If f1, f2 and f12 exist and are continuous functions around the
point (x1, x2), then the second order partial derivative f21(x1, x2) exists and equals

(8) f21(x1, x2) = f12(x1, x2).

Proof:  By the definition of f21(x1, x2), we have

f21(x1, x2) ≡ lim hÆ0 [f2(x1 + h, x2) - f2(x1, x2)] / h

= lim hÆ0 h-1[lim kÆ0 {f(x1 + h,x2 + k) - f(x1 + h, x2)} / k
+ lim kÆ0 {f(x1, x2 + k) - f(x1, x2)} / k].

by the definition of f2 used two times

= lim hÆ0 lim kÆ0 h-1k-1[g(x1 + h) - g(x1)]

defining g(t) ≡ f(t, x2 + k) - f(t, x2)

= lim hÆ0 lim kÆ0 h-1k-1[g¢(x*1 )]

where x*1  is between x1 + h and x1, 
applying the Mean Value Theorem to g

= lim hÆ0 lim kÆ0 k-1[f1(x*1 , x2 + k) - f1(x*1 , x2)]

cancelling h's and using the definition of g

= lim hÆ0 f12(x*1 , x2)
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by the definition of f12

= f12(x1, x2)

using the continuity of f12.
Q.E.D.

Now consider conditions (6) when N = 2.  Using Young's Theorem, these
conditions become:

(9) Dvvf(x1, x2) = v2
1 f11(x1, x2) + 2v1v2f12(x1, x2) + v2

2 f22(x1, x2) > 0

for all v1 and v2 such that v2
1   +  v2

2  = 1.

Our problem is to reduce the infinite number of conditions in (9) down to a finite
number of conditions.

Suppose v1 = 0.  Since v2
1  + v2

2  = 1, we have v2
2  = 1 and (9) reduces to

(10) f22(x1, x2) > 0.

Now let us fix v1≠ 0 and look at the right hand side of (9) as a function of v2.  We
want to know if

(11) g(v2) ≡ v2
1  f *11  + 2v1v2  f *12  + v2

2   f *22  > 0

where f*ij   ≡ fij(x1, x2).  Let us try to minimize g with respect to v2:

g¢(v2) = 2v1f *12  + 2 v2  f *22 set=   0 Æ v*
2   = -v1 f *12  /f *22  

g¢¢(v*
2 ) = 2f *22  

  > 0 using (10).

Hence v*
2   = globally minimizes g(v2).  Thus if  g(v*

2 ) > 0, then g(v2) ≥ g(v*
2 ) > 0

for all v2.  Now calculate g(v*
2 ):

g(v*
2 ) = v2

1 f *11  + 2v1(- v1f *12  /f *22  )f *12  + v2
1 f *12 2/f *22  = v2

1 [f *11  - f *12 2/f *22 ].

Thus necessary and sufficient conditions for (9) to be true are (10) and
f *11   - f *12 2 / f *22   > 0 which in view of (10) is equivalent to:
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(12) f11(x1, x2) f22(x1, x2) - [f12(x1, x2)]2 > 0.

Thus the infinite number of inequalities in (9) are equivalent to the two
conditions (10) and (12).

Suppose Conditions (9) are satisfied.  Then set v2 = 0 and (9) reduces to:

(13) f11(x1, x2) > 0.

Problem:  Show that conditions (10) and (12) are equivalent to conditions (12) and
(13).

Now consider conditions (4) when N = 2.  We may modify our analysis on the
previous page and show that (4) is equivalent to the following two conditions:

(14) f11(x1, x2) < 0 and

(15) f11(x1, x2) f22(x1, x2) - [f12(x1, x2)]2 > 0.

Condition (14) may be replaced by

(16) f22(x1, x2) < 0.

(Another way to derive (14) and (15) from (13) and (12) is to observe that
maximizing f(x1, x2) is equivalent to minimizing -f(x1, x2).  Thus we require -
f11(x1, x2) > 0 and [-f11(x1, x2)][-f22(x1, x2)] - [-f12(x1, x2)]2 > 0 and these two
inequalities are equivalent to (14) and (15).)

Example 1:  Maximize f(x1, x2) ≡ 2x1 + 2x2 - x2
1   + x1x2 - x2

2  .

f1(x1, x2) = 2 - 2x1 + x2  set=    0 Solution is x*
1  = x*

2  = 2.
f2(x1, x2) = 2 + x1 - 2x2  set=    0

f11(x1, x2) = -2 , f12(x1, x2) = 1
f21(x1, x2) = 1 , f22(x1, x2) = -2

f11(x*
1 , x*

2 ) = - 2 < 0

f11(x*
1 , x*

2 ) f22(*1 , x*
2  ) - [f12(x*

1 , x*
2 ])2

= [-2] [-2] - 12
= 4 - 1
= 3 > 0
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Therefore the second order sufficient conditions for a local max are satisfied at
x*

1  = 2, x*
2  = 2.  Since there is only one solution to the first order conditions and

f(x1, x2) becomes large and negative as x2
1   +  x%22  becomes large, we conclude

that our local max is also the global max.

Example 2:  Two Input Cobb-Douglas Production Function

Suppose that a competitive firm utilizes positive amounts of two inputs, x1 and
x2, in order to produce units of a single output y.  The technology of the firm
may be summarized by means of a production function f; i.e., y = f(x1, x2) denotes
the maximum amount that can be produced in a certain period of time using x1
units of input 1 and x2 units of input 2.  Suppose that the firm can sell units of
output at the fixed price p0 > 0 and can purchase units of input 1 and 2 at the
fixed prices p1 and p2.  Then the firm's constrained profit maximization problem is

(17) maxy, x1, x2{p0y - p1x1 - p2x2:  y = f(x1, x2)}.

Problem (17) is a constrained profit maximization problem involving 3 decision
variables, y, x1, x2; 3 exogenous variables, p0, p1, p2; and one (production
function) constraint.  Let us substitute the constraint function into the objective
function and reduce (17) into the following unconstrained profit maximization
problem involving the two decision variables, x1 and x2:

(18) maxx1, x2{p0f(x1, x2) - p1x1  - p2x2}.

We cannot solve (18) until we are given a concrete functional form for the
production function f.  Suppose that

(19) y = f(x1, x2) ≡ a  x1
a1 x2

a2

where the technological parameters satisfy the following restrictions

(20) a > 0, a1 > 0, a2 > 0, a1 + a2 < 1.

Substituting (19) into (18), we find that the first order necessary conditions for
(18) are:

(21) a1p0ax1   x1
a1-1

  x2
a2 - p1 set=   0;

(22) a2p0ax2   x1
a1

  x2
a2 -1- p2 set=   0.

Multiply (21) by x1, multiply (22) by x2.  We get:
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(23) a1p0ax1   x1
a1

  x2
a2  = p1x1 and

(24) a2p0ax2   x1
a1

  x2
a2  = p2x2.

Now divide (23) by (24) and simplify.  We get

(25) x1  = a1  a2
-1p-1

1   p2x2.

Substitute (25) into (24) and simplify.  We get

(26) x*2  = [aa2  a1
a1

  a2
-a1 ]1/(1 - a1 - a2)p01/(1 - a1 - a2)p1- a1/(1 - a1 - a2)p2( a1 -1)/(1 - a1 -  a2)

≡ k2p01/(1 - a1 - a2)p1- a1/(1 - a1 - a2)p2( a1 -1)/(1 - a1 -  a2)

≡ D2(p0, p1, p2, a, a1, a2)

Now substitute (26) into (25) and get:

(27) x*1   = [a1  a2
-1k2]p01/(1 - a1 - a2)p1(a2-1)(1 - a1 -  a2)p2 - a2/(1 - a1 - a2)

≡ k1p01/(1 - a1 - a2)p1(a2-1)/(1 - a1 -  a2)p2 - a2 /(1 - a1 - a2)

≡ D1(p0, p1, p2, a, a1, a2).

The x1 and x2 solutions to (18) defined by (27) and (26) are the firm's system of
profit maximizing input demand functions, D1 and D2.  These two functions tell us
how the firm's demands will vary as the output and input prices p0, p1 and p2
change.  The demand functions also depend on the technological parameters a,
a1 and a2 that appeared in the production function (19).

To obtain the firm's output supply function S, substitute (26) and (27) into (19)
and obtain:

(28) y*  = [a  k1
a1 k2

a2 ]p0(a1 + a2)/(1 - a1 - a2)p1-a1/(1 - a1 - a2)p2-a2/(1 - a1 - a2)

≡ k0p0(a1 + a2)/(1 - a1 - a2)p1-a1/(1 - a1 - a2)p2-a2/(1 - a1 - a2)

≡ S(p0, p1, p2, a, a1, a2).

This example illustrates how the firm's profit maximization problem generates
output supply functions and input demand functions.
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Question:  if we were given data on the firm's output in period t, yt, the output
price pt

0  and  the input prices pt
1  and pt

2  for period t for t = 1, . . ., T, how could
we use these data to obtain estimates for the firm's technological parameters a,
a1 and a2?  Hint:  take the logarithm of both sides of (28) and recall example 2 in
section 3 above.

We are not quite through with the above example:  we have not checked whether
our solution defined by (26) and (27) satisfies the second order sufficient
conditions for a local maximum.  We first calculate the second order partial
derivatives  f*ij  ≡ fij(x*1 , x*2 ) for i, j = 1, 2:

f *11  = p0aa1(a1 - 1)  x1
*a1-2 x2

*a2 ; f *12  = p0aa1a2   x1
*a1-1x2

*a2-1=  f *21 

f *22  = p0aa2(a2 - 1)  x1
*a1 x1

*a2 -1

By (20) a1 < 1 and a2 < 1 so that

(29) f *11  < 0 and f *22  < 0.

(30) f *11  f *22  - (f *12 )2 = [p0a  x1
*a1-1x2

*a2-1)]2[a1(a1 - 1)a2(a2 - 1) - (a1a2)2]

= [p0a  x1
*a1-1x2

*a2-1)]2a1a2[1 - a1 - a2]

> 0 using (20).

Thus the second order sufficient conditions for a local max are satisfied and our
solution functions defined by (26) and (27) are valid.
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11. The Lagrange Multiplier Technique

In economics, constrained maximization problems are often solved using the
Lagrange multiplier technique.  Thus it is necessary for us to explain what is is.

Suppose f and b are differentiable functions of two variables x1 and x2 and we
wish to solve the following constrained maximization problem (e.g., recall
example 1 in section 3):

(1) maxx1,x2{f(x1, x2) :  b(x1, x2) = 0}.

Suppose that the maximum to (1) occurs at a point x*1 , x*2  in the interior of the
domain of both functions.  Suppose also that f2(x*1 , x*2 ) ≠ 0 and b2(x*1 , x*2 ) ≠ 0.

Consider the indifference or level curve of f through the point (x*1 , x*2 ).  This is
the set {x1, x2  :  f(x1, x2) = f(x*1 , x*2 )}.  Consider also the constraint curve, {x1, x2  :
b(x1, x2) = 0}.  Obviously, if x*1 , x*2  solves (1), then x*1 , x*2  is on the constraint
curve; i.e.,

(2) b(x*1 , x*2 ) = 0.

From elementary geometrical considerations, it can be seen that if x*1 , x*2  solves
(1), then the indifference curve of f through x*1 , x*2  must be tangent to the
constraint curve and the point of tangency occurs at x*1 , x*2 .  Thus the slopes of
the two curves must be equal.  From formula (17) in section 6, the slope of the
indifference curve through x*1 , x*2  is -f1(x*1 , x*2 )/f2(x*1 , x*2 ) while the slope of the
constraint function at x*1 , x*2  is -b1(x*1 , x*2 )/b2(x*1 , x*2 ).  Equating these two
slopes yields the equation

(3) -f1(x*1 , x*2 )/f2(x*1 , x*2 ) = -b1(x*1 , x*2 )/b2(x*1 , x*2 )

Now rearrange (3) to yield the following equation:

(4) -f1(x*1 , x*2 )/b1(x*1 , x*2 ) = - f2(x*1 , x*2 )/b2(x*1 , x*2 )
≡ l*

where we have defined the common ratio in (4) to be the number l*.  Now we
may rearrange equations (4) to yield the following two equations involving l*:

(5) f1(x*1 , x*2 ) + l*b1(x*1 , x*2 ) = 0
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(6) f2(x*1 , x*2 ) + l*b2(x*1 , x*2 ) = 0.

Equations (2), (5) and (6) may be regarded as three equations in the three
unknowns x*1 , x*2  and l*.  These are Lagrange's first order necessary conditions for
x*1 , x*2  to solve the constrained maximization problem (1).

These conditions may be obtained in a simple way by defining the Lagrangian
L(x1, x2, l) by:

(7) L(x1, x2, l) ≡ f(x1, x2) + lb(x1, x2).

It can be verified that equations (5), (6) and (2) are equivalent to the following
first order conditions:

(8) ∂L(x*1 , x*2 , l*)/∂x1 = 0; ∂L(x*1 , x*2 , l*)/∂x2=0; ∂L(x*1 , x*2 , l*)/∂l = 0

The second order conditions for the Lagrangian technique are too complex for us
to develop here.  In practice, when using the Lagrange multiplier technique for
solving (1), one simply hopes that the point x*1, x*2 found by solving (8) is the
desired maximum.

Question:  Suppose (1) was a minimization problem instead of a maximization
problem.  How could we adapt the above technique?

Problem:

Determine whether the following functions have any local minimums or
maximums.  Check the relevant second order conditions.  The domain of
definition for each function is two dimensional space.
(i) f(x1,x2) ≡ x1

2 + x2
2 - 2x1 - 2x2 ;

(ii) f(x1,x2) ≡  - x1
2 + x1x2 - x2

2 + x1 - x2 ;
(iii) f(x1,x2) ≡   x1

2 - 2x1x2 + x2
2 .


