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CHAPTER 2:  ELEMENTARY MATRIX ALGEBRA

W. Erwin Diewert                                                          May 2003

Reference:  G. Hadley:  Linear Algebra, Addison-Wesley, 1961.

1. The Algebra of Vectors and Matrices

Definition:  An N vector is a column of N numbers, e.g. x = 
  

1
3
5

È 

Î 
Í 

˘ 

˚ 
˙  is a 3

dimensional vector.

Geometrically speaking, with each vector x, we can associate a point in N
dimensional space; the ith component of the vector x corresponds to the distance

along the ith coordinate axis from the point x to the origin 0 =

  

0
0
:.
0

È 

Î 

Í 
Í 

˘ 

˚ 

˙ 
˙ 

e.g. x = 
  

1
3
5

È 

Î 
Í 

˘ 

˚ 
˙  = 

  

x1
x2
x3

È 

Î 
Í 

˘ 

˚ 
˙ 

                                       x3

              x
5

3       
    1

x1

x2

Definition:  An M x N matrix A is a rectangular array of numbers with M rows
and N columns. e.g.
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A = 

  

a11 a12 . . . a1N
a21 a22 . . . a2N

:. :. :.
aM1 aM2 aMN

È 

Î 

Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 

where aij is a number for i = 1, 2, . . ., M (row index) and j = 1, 2, . . ., N (column
index)

Note that a vector can now be defined to be a matrix with only 1 column.

There are various operations which we can perform on matrices (and vectors):

Definition of Matrix Addition:  If A and B are two M by N matrices, then

A + B 
  
≡

a11 + b11, a12 + b12 , . . ., a1N + b1N
:.

aM1 + bM1, aM2 + bM2 , . . ., aMN + bMN

È 

Î 

Í 
Í 

˘ 

˚ 

˙ 
˙ 

i.e., we simply add the corresponding components of the two matrices.

  
A = 1 2 4

5 6 8
È 
Î 

˘ 
˚   

B = 0 1 0
1 0 1

È 
Î 

˘ 
˚ 

then

  
A + B = 1 3 4

6 6 9
È 
Î 

˘ 
˚ 

e.g.
  
A = 1

0
È 
Î 

˘ 
˚ 
, B = 1

1
È 
Î 

˘ 
˚ 
, A + B = 2

1
È 
Î 

˘ 
˚ 

Definition of Scalar Multiplication:  If A is an M by N matrix and l is a scalar
(i.e., a number), then

  

lA ≡

la11, la12, . . . ,la1N
:.

laM1, laM2 , . . . ,laMN

È 

Î 

Í 
Í 

˘ 

˚ 

˙ 
˙ 

e.g. l = 2, 
  
A = 1

0
È 
Î 

˘ 
˚ 
, lA = 2

0
È 
Î 

˘ 
˚ 

Definition of Matrix Multiplication:  If A is an M by N matrix and B is an N by
K matrix (note that the number of columns in A is equal to the number of rows in
B), then
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AB =

a11 . . . a1N
:.

aM1 . . . aMN

È 

Î 

Í 
Í 

˘ 

˚ 

˙ 
˙ 

b11 . . . b1K
:. :.

bN1 . . . bMK

È 

Î 

Í 
Í 

˘ 

˚ 

˙ 
˙ 

       
  
≡

c11 . . . c1K
:. :.

cM1 cMK

È 

Î 

Í 
Í 

˘ 

˚ 

˙ 
˙ 

  where 
  
cmk ≡ amn

n=1

N
Â bn k

Thus we end up with M by K matrix.

e.g. ˙
˚

˘
Í
Î

È

++

++
=

˙
˙
˙

˚

˘

Í
Í
Í

Î

È

=˙
˚

˘
Í
Î

È
=

321

321

3

2

1

865

421
,

865

421

xxx

xxx
AB

x

x

x

BA

We can now begin to see why matrix algebra is useful in the study of systems of
simultaneous linear equations.  For example suppose we were given the
following system of M equations in the N unknowns x1, x2, . . ., xN:

  

a11x1 + a12x2 + . . . . + a1N xN = b1
a21x1 + a22x2 + . . . . + a2N xN = b2

:.
aM1x1 + aM2x2 + . . . . + aMN xN = bM

(The aij's and the bM's are given fixed numbers).

The above system of equations can be written much more compactly using
matrix notation as

Ax = b where
  
A =

a11 . . . a1N
:.

aM1 . . . aMN

È 

Î 

Í 
Í 

˘ 

˚ 

˙ 
˙ 

, 
  
x =

x1
:.

xN

È 

Î 

Í 
Í 

˘ 

˚ 

˙ 
˙ 
, 

  
b =

b1
:.

bM

È 

Î 

Í 
Í 

˘ 

˚ 

˙ 
˙ 

We are implicitly making use of another definition in the above representation
Ax = b:

Definition of Matrix Equality:  Two M by N matrices A, B are equal (written A =
B), if and only if the corresponding components of A and B are equal, i.e., if we
have

aij = bij for
  
i = 1, . . ., M
j = 1, . . . , N.
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There are a few more definitions which will be useful in what follows.

Definition:  An M by N matrix A is square is M = N:  i.e., if the number of rows =
number of columns.

(Typically in the system of simultaneous linear equations Ax = b, we have A
square; i.e., the number of equations = the number of unknowns).

Definition:  The N by N identity matrix IN (or I for short) is the following matrix:

  

IN ≡

1 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
:. . . .
0 0 0 . . . 1

È 

Î 

Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 

¸ 

˝ 
Ô Ô 

˛ 
Ô 
Ô 

N rows with zeros everywhere except on the main diagonal

Definition of the Transpose of a Matrix:  Let 
  
A =

a11a12 . . . a1N
:.

aM1aM2 . . . aMN

È 

Î 

Í 
Í 

˘ 

˚ 

˙ 
˙ 

.  Then

  

AT =

a11 . . . aM1
a12 . . . aM1

:. :.
a1N . . . aMN

È 

Î 

Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 

i.e., the rows and columns of A have been interchanged.

In order to acquire some facility in working with matrices, students are required
to do the following problems.

Problem 1:  Let 
  
I = 1 0

0 1
È 
Î 

˘ 
˚ 
,

  
A = 1 2

3 4
È 
Î 

˘ 
˚ 

, 
  
B = 0 1

1 0
È 
Î 

˘ 
˚ 
,  

  
C = -2 0

0 2
È 
Î 

˘ 
˚ 

(i) Calculate AB + 5I - 1C

(ii) Show IA = AI = A

(iii) Show that (AB)T = BT AT

(iv) Does AB = BA?

(v) (AB)C = A(BC)?
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Problem 2:  (More difficult).  Let 
  
A =

a11 . . . a1N
:.

aM1 . . . aMN

È 

Î 

Í 
Í 

˘ 

˚ 

˙ 
˙ 

 be an M by N matrix

  
B =

b11 . . . b1K
:. :.

bN1  . . . bNK

È 

Î 

Í 
Í 

˘ 

˚ 

˙ 
˙ 

 be an N by K matrix, and 
  
C =

c11 . . . cIL
:. :.

cK1 . . . cKL

È 

Î 

Í 
Í 

˘ 

˚ 

˙ 
˙ 
 be a K by L

matrix.

Show that (AB)C = A(BC).  Hint:  Take the ijth element of (AB)C (which is equal

to 

  

ainbn1, ainbn2, . . ., ainbnK
n=1

N
Â

n=1

N
Â

n=1

N
Â

È 

Î Í 
˘ 

˚ ˙ .

c1j
c2j

:.
cKj

È 

Î 

Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 

 and show that it is equal to the

ijth element of A(BC).

Definition:  Let A be a square N by N matrix.  Then we say that an N by N B
matrix is a (left) inverse of A if

BA = IN

An N by N matrix C is a (right) inverse of A if

AC = IN.

There are two points to note about the last definition:

(i) the definition says nothing about whether a left or right inverse for A will
in fact exist (they don't always as we shall see ) and

(ii)  we are forced at this stage to consider both left and right inverse as
separate entities (if they exist) since problem 1 (iv) shows that it is not
always the case that AB = BA.

Now if we consider our system of simultaneous linear equations Ax = b (where
A is square), it is clear that if we knew what a left inverse for A was (call it B
assuming one exists), then if we premultiply both sides of the matrix equation
Ax = b by B, we obtain:

BAx = Bb

or    Ix = Bb

or     x = Bb (recall Problem 1 (ii))
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and thus we have a solution to the system of equations Ax = b, namely x* = Bb
where B is a left inverse for A.

Thus we are interested in two questions:

(i) when will a left inverse for a square matrix A exist?

(ii) how can we compute it if it exists?

It turns out that the notion of a determinant is useful in answering both questions.

2. Determinants and their Properties

We must first make some preliminary definitions before we define the
determinant of an arbitrary square N by N matrix A.

Definition:  A transposition of the integers (i1, i2, . . ., iN) is a simple interchange
of 2 of the numbers.  e.g.  (3, 2, 1) is a transposition of (3, 1, 2)

Definition:  A permutation  of the integers (1, 2, . . ., N), say (i1, i2, . . ., iN) is an
even permutation if it is obtained from (1, 2, . . ., N) by an even number of
transpositions . . . is an odd permutation if it can be obtained from (1, 2, . . ., N) by
an odd number of transpositions.  e.g. (4, 1, 3, 2) is it an even or odd
permutation?  What we do is we start with (1, 2, 3, 4) and build towards (4, 1, 3,
2) by making a sequence of transpositions, filling in the appropriate elements
starting at the left and working towards the right.

(1, 2, 3, 4)
(4, 2, 3, 1)  First transposition, first component is 4 now
(4, 1, 3, 2)  Second transposition, second component is 1 now.

No further transpositions are required so as it took only 2 transpositions from (1,
2, 3, 4) to attain (4, 1, 3, 2), thus the permutation is even.

Definition:  e(i1, i2, . . ., iN) 
  
≡

1 if the permutation (i1, i2, . . ., iN ) is even
-1 if the permutation (i1,i2 , . . ., iN ) is odd

Ï 
Ì 
Ó 

where (i1, i2, . . ., iN) is some permutation of the integers (1, 2, . . ., N).

Definition:  The determinant of an (N by N) square matrix A is defined as:

Det A or |A| ≡ S e(i1, i2, . . ., iN)   a1i1a2i2 . . . aNiN
        over all
     permutations
   (i1, i2, . . ., iN)

E.g.  
  
A =

a11 a12
a21 a22

È 
Î 

˘ 
˚ 
;    |A| = e(1, 2) a11a22 + e(2, 1)a12a21
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= + a11a22 - a12a21

As there are only 2! = 2 permutations of 2 numbers, a 2 by 2 matrix has a
determinant with only 2 terms

E.g. 
  
A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

È 

Î 
Í 

˘ 

˚ 
˙ ;    

  

|A|=

e(1, 2, 3)a11a22a33 (+)
+ e(2,1, 3)a12a21a33 (-)
+ e(3,2,1)a13a22a31 (-)
+ e(1,3, 2)a11a23a32 (-)
+ e(2,3,1)a12a23a31 (+)
+ e(3,1, 2)a13a21a32 (+)

Thus a determinant is a mapping from an N by N array of numbers into a
number.

Problem 3:  (Difficult)  Let A = 
  

a1 b1
a2 b2

È 
Î 

˘ 
˚ .  Let 

  
a1
a2

È 
Î 

˘ 
˚ ,   

b1
b2

È 
Î 

˘ 
˚  be points in 2

dimensional space; e.g.

         x2

  
b1
b2

È 
Î 

˘ 
˚ 

b2

        
  

a1
a2

È 
Î 

˘ 
˚ 

a2

x1

          b1       a1

Now use the origin 
  

0
0

È 
Î 

˘ 
˚  and the 2 points 

  
a1
a2

È 
Î 

˘ 
˚ 
,  

  
b1
b2

È 
Î 

˘ 
˚  to form a parallelogram.
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x2
[a1 + b1, a2 + b2]

[b1, b2]

  [a1, a2]

          x1

Show that the area of the parallelogram is equal to |A| (except possibly for
sign).

Hint:  the area of a parallelogram is equal to the product of the base times the
height.

Comment:  the above property of 2 by 2 determinants generalizes to the N by N
case.  Write the matrix A as N column vector of dimension N, i.e.,

A =   [A•1, A•2 , . . ., A•N ]  where 

  

A•n =

a1n
a2n

:.
aNn

È 

Î 

Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 

 for n = 1, . . ., N.

Now join each of the N points   A•n  to the origin and let these N vectors form the
edges of a parallelepiped (the N dimensional generalization of a parallelogram).
Then the volume which this parallelepiped encloses = |A|.  We will prove this
fact later after we have developed the concept of orthogonality (i.e.,
perpendicularity).

Some Useful Properties of Determinants

Lemma 1:  If two rows of the N by N matrix A are identical, then |A| = 0. (N ≥
2).

Proof:  Look at |A| =        S e(i1, i2, . . ., iN)   a1i1a2i2 . . . aNiN
                permutations
            (i1, i2, . . ., iN)
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Let us suppose that rows 1 and 2 of A are identical.  Pick an arbitrary term in the
above summation, say e(i1, i2, . . ., iN)   a1i1a2i2 . . . aNiN .  Then the term e(i2, i1, . . .,
iN)   a1i2 a2i1 . . . aNiN is equal in absolute value to the first term (since rows 1 and 2
are identical and thus   a1i1a2i2 = a2i1a1i1 = a1i2 a2i1 ) but it will be of opposite  sign
to the first term since the function e changes sign every time we make a
transposition.  We may carry on dividing  the above summation into two
separate summations, where each term in the first summation has a
corresponding term in the second summation of opposite sign and thus |A| = 0.

 Q.E.D.

Lemma 2:  |AT|=|A| where A is an N by N matrix; i.e., the determinant of the
transposed matrix is the same as the determinant of the matrix itself.

Proof:   |A| = S     e(i1, i2, . . ., iN)   a1i1a2i2 . . . aNiN
  (i1, i2, . . ., iN)

= S     e(i1, i2, . . ., iN)   aj11aj2 2 . . . ajNN
      (i1, i2, . . ., iN)

          ↑
where we have rearranged terms so that the column subscript appears in natural
order.  Now if (i1, i2, . . ., iN) were an even permutation, it follows that (j1, j2, . . .,
jN) is also even permutation since as we rearrange the indices (i1, i2, . . ., iN) by
successive transpositions into (1, 2, . . ., N), we are simultaneously transposing (1,
2, . . ., N) into (j1, j2, . . ., jN).  Thus we have

= S e(j1, j2, . . ., jN)   aj11aj2 2 . . . ajNN
     (j1, j2, . . ., jN)

= |AT|.
Q.E.D.

The above two lemmas imply that if two columns of the N by N matrix A are
identical, then |A|=0.

Lemma 3:  Let A by an N by N matrix, which has nth row equal to   An• ; i.e.

  

A =

A1•
A2•

:.
AN•

È 

Î 

Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 

.  Let k be a scalar.  Then |[kA1•
T,A2•

T,...,AN•
T]|= k|A|, i.e., if we

multiply a row of the matrix A by a scalar k, then the determinant of the
resulting matrix = k|A|.
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Proof: |

  

kA1•
A2•
:.

AN•

È 

Î 

Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 

 |  = 
  

S
(i1, i2, . . . , iN )  e(i1, i2, . . ., iN)   (kali1 )   a2i2 . . . aNiN

       = k S e(i1, . . ., iN)  a1i1a2i2 . . . aNiN
    (i1, . . ., iN)

       = k   |A|
Q.E.D.

L e m m a  4 :  |

  

A1• + B1•
A2•

:.
AN•

È 

Î 

Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 

|= |

  

A1•
A2•

:.
AN•

È 

Î 

Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 

| + |

  

B1•
A2•

:.
AN•

È 

Î 

Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 

| where

  

A1• = [a11 . . . a1N]
B1• = [b11 . . . b1N]
A2• = [a21 . . . a2N ]

:.
AN• = [aN1 . . . aNN]

Proof: |

  

A1• + B1•
A2•

:.
AN•

È 

Î 

Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 

| ≡ 
  

S
(i1, i2, . . . , iN ) e(i1,  i2,  .  .  . ,  iN)

  (ali 1 + bli1 )   a2i2 . . . aNiN

               = 
  

S
(i1, i2, . . . , iN ) e(i1, i2, . . ., iN)   a1i1a2i2 . . . aNiN

   + 
  

S
(i1, i2, . . . , iN )  e(i1, i2, . . ., iN) 

NNiii aab ...
21 21

   =  |

  

A1•
A2•

:.
AN•

È 

Î 

Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 

| + |

  

B1•
A2•

:.
AN•

È 

Î 

Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 

|

Q.E.D.

Problem 4:  Let 
  
A =

a11 a12
a21 a22

È 
Î 

˘ 
˚ 
,

  
B =

b11 b12
b21 b22

È 
Î 

˘ 
˚ 
.  Show |AB| = |A|•|B|.

Problem 5:  Suppose we are given  N-1, N dimensional vectors
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A•2 =

a12
a22

:.
aN2

È 

Î 

Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 

, A•3 =

a13
a23

:.
aN3

È 

Î 

Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 

, . . . , A•N =

a1N
a2N

:.
aNN

È 

Î 

Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 

and we define    A•1 by   A•1 ≡ k2  A•2  + k3  A•3  + . . . + kN   A•N  where k2, k3, . . ., kN
are numbers.  Show that |A| = |  A•1,   A•2 , . . .,   A•N | = 0.

Hint:  Use the definition of   A•1 above and the previous 4 lemmas.

Lemma 5:  Let A be an N by N matrix.  If two columns of A are interchanged and
if we take the determinant of the resulting matrix, then the resulting determinant
= - |A|.

Proof:
|.,..,,,.,..,,,.,..,|0 111121 Njijjijii AAAAAAAAAAA •+•••-•+•••-••• ++=

(the determinant is 0 since 2 columns of the above matrix are equal; recall
lemmas (1) and (2))

    =   |A•1 . . .A•i-1, A•i , A•i+1,. . .,A•j + A•i , . . .,A•N|+|A•1, . . .,A•i-1,A•j ,

  A•i+1,A•j + A•i , . . . ,A•N|

(using lemma (4) in conjunction with lemma (2)).

     =   |A•1. . . A•i . . . A• j . . . A•N|+|A•1. . . A•i . . . A•i . . . A•N|
   +   |A•1. . . A•j . . . A•j . . . A•N|+|A•1. . . A•j . . . A•i . . . A•N|

(again using lemma (4) in conjunction with lemma (2) 2 times)

     =   |A•1. . . A•i . . . A• j . . . A•N| + 0
+ 0  +   |A•1. . . A•j . . . A•i . . . A•N|
Since matrices which have 2 identical columns have 0 determinants

Therefore   |A•1. . . A•i . . . A• j . . . A•N|= -   |A•1. . . A•j . . . A•i . . . A•N|
Q.E.D.

Lemma 6:  Let A and B be 2 N x N matrices.  Then |AB| = |A| •"|B|.
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Proof:  Let A =   [A•1 ,A•2 , . . . A•N]  and B = 

  

b11 b12 . . . b1N
b21 b22 . . . b2N

:.
bN1 bN1 . . . bNN

È 

Î 

Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 

then

  
  
|AB|=| A•k1

bk11,
k1=1

N
Â A•k2

bk2 2
k2 =1

N
Â , . . ., A•k N

bkN N
k N =1

N
Â |

by definition of AB

          
  
=

k1=1

N
Â . . . |A•k1 bk11

k N =1

N
Â

k2 =1

N
Â ,A•k2 bk2 2, . . . , A•kN bk NN |

making repeated use of lemma (4)

          
  
=

k1=1

N
Â . . . bk11

k N =1

N
Â

k2 =1

N
Â , bk2 2, . . . , bk NN|A•k1 , A•k2 , . . . , A•k N |

making repeated used of lemma (3) (applied to transposes)

          =               S        bk11bk2 2 . . . bkN N|A•k1 ,A•k2 , . . .,A•kN |
over all permutations
      (k1, k2, . . ., kN)
of  (1, 2, . . ., N)

since by lemma (1), the determinant is zero if any two rows (or columns
using lemma (2)) are identical.

           =               S            |..,..,,|).,..,,(... 212121 21 NNNkkk AAAkkkbbb
N ••e

      permutations
      (k1, k2, . . ., kN)

since by lemma (5) every time we interchange a column of A, we change
the sign of the determinant . . .

=  |BT| •   |A•1A•2 . . . A•N| = |B| • |A| (using the definition of)
|BT|

= |A| • |B|
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since |B| and |A| are scalars the order of multiplication can be
interchanged.

Q.E.D.

We note that the calculation of the determinant of a square matrix A using the
permutation definition on page 10 above is not an easy matter if the size of A is
greater than say 5 since when N = 5, the number of terms in the definition equals
120 = 1 ¥  2 ¥  3 ¥  4 ¥  5.  When N = 10, the number of terms is 10! = 4, 536,000.
Hence, in the next section, we develop a practical method for calculating
determinants.  The method relies on the properties of determinants that we
developed in this section.

3. A Gaussian Method for Calculating Determinants

A diagonal method A ≡ [aij] is a square matrix that has zero elements everywhere
except possibly down the main diagonal which runs from the northwest corner
of the matrix to the southeast corner; i.e., A ≡ [aij] is diagonal iff aij = 0 for all i ≠ j.

From the definition of the determinant, it is clear that the determinant of a
diagonal matrix is equal to the product of its main diagonal elements; i.e.,

|A| =   Pi=1
N aii if A is diagonal.

An upper triangular matrix A ≡ [aij] is a square matrix that has zero elements below
the main diagonal; i.e., aij = 0 for all i and j such that 1 ≤ j < i ≤"N.

It can be seen that the determinant of an upper triangular matrix is also equal to
the product of its main diagonal elements,   Pi=1

N aii .  Why is this?  Recall the
definition of |A|:

  
|A|= S (j1 , j2 , . . .,jN )a1j1a2j2 . . . aNjN .permutations

Assume A is upper triangular.  If we pick j1 ≥ 2, then eventually, one of the later
indexes j2, j3, . . ., jN must be chosen to be 1.  For the sake of definiteness, suppose
j2 = 1 and hence a21 appears in the term under consideration.  But since all
elements below a11 in the first column of the matrix are 0, this term must be 0.
Thus, in order to obtain a nonzero term, we must pick j1 = 1.  Now consider the
choices for the j2 index.  Since we have chosen j1 = 1 in order to obtain nonzero
terms, j2 can be any one of the indexes 2, 3, . . ., N.  However, if we pick j2 ≥ 3,
then one of the later indexes j3, j4, . . ., jN must be chosen to be 2 in order for (1, j2,
j3, . . ., jN) to be a permutation of (1, 2, . . ., N).  For the sake of definiteness,
suppose j3 = 2 and hence a32 appears in the term under consideration.  But since
all elements below a22 in the second column must be zero by the definition of an
upper triangular matrix, we have a32 = 0.  Thus in order to obtain a nonzero term
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in the definition of the determinant, we must pick j1 = 1 and j2 = 2.  The same
logic can be repeated to show that the only possible nonzero term in the
definition of the determinant of an upper triangular A is the term where (j1, j2, . .
., jN) = (1, 2, . . ., N) so that |A| =   Pi=1

N aii  in this case.  Let us call this result
Lemma 7.

A lower triangular matrix A ≡ [aij] is a square matrix that has zero elements above
the main diagonal; i.e., aij = 0 for all i and j such that 1 ≤ i < j ≤ N.

Problem 6:  Show that if A is lower triangular, then |A|≡   Pi=1
N aii .  Hint:  Use

Lemmas (2) and (7).

Lemma (7) shows that it is very easy to calculate the determinant of an upper
triangular matrix.  Lemmas (3), (4) and (2) tell us that if we add a multiple of one
row of a square matrix to another row, then the determinant of the matrix
remains unchanged.  This suggests an effective strategy for calculating the
determinant of a square matrix A:  add multiples of higher rows of A to lower
rows of A in order to reduce or transform A into an upper triangular matrix U ≡
[uij].  Then |A| =   Pi=1

N uii; i.e., the determinant of A is equal to the product of the
main diagonal elements of the upper triangular matrix U.

Algorithm:  Stage 1:  A ≡ [aij] is N by N.

Case (i):   a11 ≠ 0.

Add - (a21/a11)   A1•  to row 2 of A;
Add - (a31/a11)   A1•  to row 3 of A;
                  :.
Add - (aN1/a11)   A1•  to row N of A;

After doing the above row operations, the original matrix A will be transformed
into a matrix that has the following form:

(1)
  

a11, a12, . . . ,a1N
0N-1, A(2)

È 

Î Í 
˘ 

˚ ˙ 

where 0N-1 is an N-1 dimensional column vector of zeros and A(2) is an N-1 by
N-1 matrix.

Case (ii):  a11 = 0 but ai1 ≠ 0 for some i > 1.

In this case, a11 is equal to zero but there are 1 or more nonzero elements below
a11 in the first column of A.  Let ai1 be the first such nonzero element in the first
column of A.  Simply add row i of A to the first row of A.  The resulting
transformed A matrix is then of the form considered in case (i) above and we can
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apply the algorithm outlined there to reduce the transformed A into the
following form:

(2)
  

ai1, a12 + ai2,a13 + ai3, . . ., a1N + aiN
0N-1, A(2)

È 

Î Í 
˘ 

˚ ˙ 

(The N-1 by N-1 matrix A(2) which appears in (2) is not in general the same as the
A(2) which appeared in (1) above).

Case (iii):   ai1 = 0 for i = 1, . . ., N.

In this case, the first column of A is 0N so the matrix already has the form given
by (1) and (2) above; i.e., we have

(3)
  

0, a12, . . . ,a1N
0N-1, A(2)

È 

Î Í 
˘ 

˚ ˙ 

where A(2) is a submatrix of the original A in this case.

Stage 2:  Apply the row operations outlined in Stage 1 to the N-1 by N-1 matrix
A(2) instead of to the N by N matrix A.  Reduce A(2) into

  

a22
(3) , a23

(3), a24
(3) , . . . , a2N

(3)

0N-2 , A(3)
È 

Î Í 
˘ 

˚ ˙ 

Stage 3:  Apply the row operations outlined in Stage 1 to the N-2 by N-2 matrix
A(3) to create zeros in the elements of the first column of A(3) below the main
diagonal.

  :.

Stage N-1:  At the end of this stage, we have reduced the original A matrix into an
upper triangular matrix whose determinant can readily be calculated as the
product of the main diagonal elements.

Problem 7:  Calculate |A| if A is defined as follows:

(i)
  
A ≡

1 2 3
2 4 6
7 8 9

È 

Î 
Í 

˘ 

˚ 
˙ 

(ii)
  
A ≡

0 0 0 1
0 1 0 0
0 0 2 0
1 0 0 0

È 

Î 

Í 
Í 

˘ 

˚ 

˙ 
˙ 
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Problem 8:  Suppose 
  
A = 1 0

0 1
È 
Î 

˘ 
˚ 

 and 
  
B = 1 1

1 1
È 
Î 

˘ 
˚ 

.  Is it true that |A+B| = |A| +
|B|?


