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4. Determinants and the Inverse of a Square Matrix

In this section, we are going to use our knowledge of determinants and their
properties to derive an explicit formula for the inverse of a square matrix A
provided that |A| ≠ 0.  Before we do this , we need one additional property of
determinants which is a consequence of our Gaussian algorithm for computing
the value of a determinant.

Lemma 8:  Suppose the N by N matrix A has the following block upper
triangular form:

  
A ≡ a, bT

0N-1, C
È 

Î Í 
˘ 

˚ ˙ 

where a is a scalar, b is an N-1 dimensional column vector and C is an N-1 by N-
1 matrix.  Then the determinant of A is equal to a times the determinant of C; i.e.,

(4) |A|= |a| |C| = a |C|.

Proof:  The Guassian algorithm explained in the previous section can be used to
calculate the determinant of A.  For Stage 1 of the algorithm, we do not have to
do anything:  A is already in the form that is required at the end of Stage 1.  Thus
stages 2 to N-1 of the algorithm reduce the matrix C into an upper triangular
matrix U say.  Thus we have

(5)

  

|C|=|U|=

u11, u12, . . . , u1,N-1
0 u22, . . . , u2,N-1
:.
0, 0, . . . , uN-1,N-1

  = u11u22 . . . uN-1,N -1.

At the same time, we have the following formula for |A|:

(6)

  

|A|=

a, b1, b2, . . ., bN-1
0, u11, u12 , . . ., u1,N-1
:.

0, 0, 0, . . ., uN-1,N-1

= a u11 . . . uN-1,N-1 = a|C|

where the last equality in (6) follows from (5).
Q.E.D.

Corollary:  Suppose the N by N matrix A has the following block, lower
triangular form:

(7)
  
A ≡ a, 0N-1

T

b, C
È 

Î Í 
˘ 

˚ ˙ . Then
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(8) |A|=|a| |C| = a|C|.

Proof:  Let A be defined by (7).  Then AT has the form that is required to apply
Lemma (8).  Thus we have, using Lemma (2),

|A| = |AT|  = a|CT| using Lemma (8)
= a|C| using Lemma (2)

which is the desired result.
Q.E.D.

The next Lemma requires two definitions.  Let A be a square N by N matrix.

Definition:  A(i,j) denotes the ijth minor of the matrix A and it is the determinant
of the N-1 by N-1 submatrix of A which has deleted row i and column j.

Definition:  Aij ≡ (-1)i+j A(i, j) denotes the ijth cofactor of the matrix A; it is equal
to the ijth minor of A; it is equal to the ijth minor of A times minus one raised to
the power i+j.

Examples:
  
A =

a11 a12
a21 a22

È 
Î 

˘ 
˚ 

A11 = (-1)1+1 a22 = a22
A22 = (-1)2+2 a11 = a11
A12 = (-1)1+2 a21 = -a21
A21 = (-1)1+2 a12 = -a12;

  
A ≡

a11 a12 a13
a21 a22 a23
a31 a32 a33

È 

Î 
Í 

˘ 

˚ 
˙ 

  
A11 = (-1)1+1 a22 a23

a32 a33
; A12 = (-1)1+2 a21 a23

a31 a33
; 

  
A13 = (-1)1+3 a21 a22

a31 a32
; etc.

Lemma (9):  Expansion by Cofactors along the First Row:

(9) |A| = a11 A11 + a12 A12 + . . . + a1N A1N

Proof:  Let A = [aij] be an N by N matrix and let the N dimensional unit vectors be
denoted by the columns
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e1 ≡

1
0
:.
0

È 

Î 

Í 
Í 

˘ 

˚ 

˙ 
˙ 
, e2 ≡

0
1
:.
0

È 

Î 

Í 
Í 

˘ 

˚ 

˙ 
˙ 
, . . ., eN ≡

0
0
:.
1

È 

Î 

Í 
Í 

˘ 

˚ 

˙ 
˙ 
.

It can be seen that the first row of the matrix A can be written as

  S j=1
N a1j e j

T ≡ A1•.   Thus we have

  

|A|=

A1•
A2•

:.
AN•

=

aijj=1
NÂ ej

T

A2•
:.

AN•

(10)          

  

= j=1
NÂ

aije j
T

A2•
:.

AN•

          making repeated use of Lemma (4).

The first of the N determinants on the right hand side of (10) can be written as

  

a11 0, . . . , 0
˜ A •1 ˜ A •2 , . . . , ˜ A •N

= a11 ˜ A •2 , . . . , ˜ A •N

using the Corollary to Lemma (8)

(11)          = a11 A(1, 1)
       = a11 A11

where   
˜ A •j  is the jth column of A after dropping the first row of A, for j = 1, 2, . . .,

N.

The second of the N determinants on the right hand side of (10) can be written as

  

0 a12 0 . . . 0
˜ A •1 ˜ A •2 ˜ A •3 . . . ˜ A •N

= -
a12 0 0 . . . 0
˜ A •2 ˜ A •1 ˜ A •3 . . . ˜ A •N

where we have interchanged the first two columns of the first matrix in the
second matrix and hence by Lemma (5) we must multiply by -1 to preserve the
equality

= (-1) a12   
˜ A •1 , ˜ A •3 , . . ., ˜ A •N by the Corollary to Lemma (8)

= (-1) a12 A(1,2) by the definition of the minor A(1,2)
= (-1)2+1 a12 A(1,2) multiplying by (-1)2
= a12 A12 by the definition of the cofactor A12.
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The third of the N determinants on the right hand side of (10) can be written as:

  

0 0 a13 0 . . . 0
˜ A •1 ˜ A •2 ˜ A •3 ˜ A •4 . . . ˜ A •N

= (-1)2
a13 0 0 0 . . . 0
˜ A •3 ˜ A •1 ˜ A •2 ˜ A •4 . . . ˜ A •N

where we have made 2 column interchanges to move the original third column
first to column 2 and then to column 1

= (-1)2 a13   
˜ A •1 , ˜ A •2 , ˜ A •3 , ˜ A •4 , ˜ A •5 , . . ., ˜ A •N   by the Corollary to Lemma (8)

= a13 (-1)2 A(1,3)        by the definition of the minor A(1,3)
= a13 (-1)3+1  A(1,3)               multiplying by (-1)2
= a13 A13        by the definition of the cofactor A13.

Continuing on in the same way for the remaining N-3 terms on the right hand
side of (10), we see that formula (9) results.

Q.E.D.

Lemma(10):  Expansion by Cofactors along the ith Row:

(12) |A| = ai1 Ai1 + ai2 Ai2 + . . . + aiN AiN for i = 1, 2, . . ., N.

Proof:  If i = 1, Lemma (10) reduces to Lemma (9).  For i > 1, we make i - 1 row
interchanges to move the ith row up to the first row and then we apply Lemma
(9).  Thus we have

 

  

|A|=

A1•
:.

Ai•
:.

AN•

= (-1)i-1

Ai•
A1•
A2•

:.
Ai-1•
Ai+1•

:.
AN•

because there are i - 1 row interchanges

          
  
= (-1)i-1 aij(-1)j+1A(i, j)

j=1

N
Â

Ï 
Ì 
Ó 

¸ 
˝ 
˛ 

applying Lemma (9)

          
  
= aij

j=1

N
Â Aij using the definition of the cofactor Aij.

Q.E.D.

Corollary to Lemma (10):   aj1 Ai1 + aj2 Ai2 + . . . + ajN AiN = 0  if  i ≠ j.
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Proof:  Let  
  
A =

A1•1
:.

AN•

È 

Î 

Í 
Í 

˘ 

˚ 

˙ 
˙ 

Suppose we replace the ith row of the matrix A with the jth row of A where i ≠ j.
Then by lemma (1), we have

  

0 =

A1•
:.

Aj•
:.

Aj•
:.

AN•

¨  ith row has been replaced by jth row.

    = aj1 Ai1 + a j2 Ai2 + . . . + a jN AiN  using lemma (10) except that the numbers
ail, ai2, . . ., aiN have been replaced by aj1, aj2, . . ., ajN.

Q.E.D.

Lemma (10) and its corollary enable us to calculate a right inverse of an N by N
matrix A provided that |A| ≠ 0.

Lemma (11):  If A is an N by N matrix and |A| ≠ 0, then a right inverse for A,
say   AR

-1 , given by

  

AR
-1 =

A11
|A| . . . A N1

|A|
:.

A1N
|A| . . . ANN

|A|

È 

Î 

Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 

=
1

|A|

A11 A12 . . . A1N
A21 A22 . . . A2N

:.
AN1 AN2 . . . ANN

È 

Î 

Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 

T

where Aij is the ijth cofactor of the matrix A.

Proof:  Take the ith row of A,    Ai• , time the jth column of   AR
-1 .  We get

  
ai1

A j1
|A| + ai2

Aj 2
|A| + . . . + aiN

A jN
|A| =

|A|
|A| if i = j by lemma (10)
0

|A| if i ≠ j by corollary to (10)

Ï 
Ì 
Ó 
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Thus we have A   AR
-1 =

  

1 0 . . . 0
0 1 . . . 0
:.
0 0 . . . 1

È 

Î 

Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 

= IN  and thus   AR
-1  is a right inverse for A

by definition.
Q.E.D.

Problem 9:  Calculate a right inverse for the following matrices:

  
1 0
0 1

È 
Î 

˘ 
˚ 
, 1 2

3 4
È 
Î 

˘ 
˚ 
, a b

c d
È 
Î 

˘ 
˚ 

     assuming ad - bc ≠ 0  and 
  

1 0 0
0 1 2
0 3 4

È 

Î 
Í 

˘ 

˚ 
˙ .

Problem 10:  Suppose that the N by N matrix A has a right inverse B and a left
inverse C.  Show that B = C.  Hint:  You will need the results of problem 2.

Problem 11:  If A is an N by N matrix and |A| ≠ 0, show that a left inverse exists.
(Note:  Problem assumed the existence of a left inverse; here we have to show that
one exists.  Hint:  If |A| ≠ 0, then |AT| ≠ 0.  Thus AT will have a right inverse by
lemma (11)).

Problem 12:  If A is an N by N matrix and |A| = 0, show that there does not
exist an N by N matrix B such that AB = IN.  Hint:  You may find lemma (6)
useful.

The above results give us an easily? checked condition for the existence of an
inverse matrix for an N by N matrix A:  namely if |A| ≠ 0, then a common right
and left inverse matrix exists which we will denote by A-1; If |A| = 0, then
A-1 does not exist.  There is another convenient condition on an N by N matrix A
which will ensure that A-1 exists and we will develop it below after we discuss
Cramer's Rule.

5. Expansion by Cofactors along a column and Cramer's Rule.

Applying lemma (10) to AT yields the following equation:

(13) |AT| = ali Ali + a2i A2i + . . . + aNi ANi for any column index i = 1, . . ., N

(i.e., we have simply interchanged row and column indices)

           = |A| since |A| = | AT|.
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Now let us consider the following system of N simultaneous equations in N

unknowns 
  
x =

x1
:.

xN

È 

Î 

Í 
Í 

˘ 

˚ 

˙ 
˙ 
:

(14) Ax = b where

A = N by matrix of coefficients

  
b =

b1
:.

bN

È 

Î 

Í 
Í 

˘ 

˚ 

˙ 
˙ 
 vector of constants.

If |A| ≠ 0, the solution to (14) is given by

(15) A-1 Ax = A-1 b

or         Ix = A-1 b
or         x* = A-1 b

             
  
=

A11 . . . A1N
A21 . . . A2N

:.
AN1 . . . ANN

È 

Î 

Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 

|A|

T

b

using lemma (11) (and problems 10 and 11; i.e. that left and right inverses exist
and coincide.)

(16) Therefore,   xi
*  = ith component of x

  
=

b1A1i + b2A2i + . . . + bNANi
|A|

(perform the relevant  matrix multiplication)

  
=

|A•1, A•2 , . . .,A•i-1,b, A•i +1, . . .,A•N|
|A|

Using (13) with the vector b replacing
the ith column of A for i = 1, 2, . . ., N.
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That is xi may be found by replacing the ith column of the matrix A by the
column vector b, take the determinant of the resulting matrix and divide by the
determinant of the original matrix A.  Result (16) is known as Cramer's Rule.

Problem 13:  Given Ax = b where 
  
A ≡

1 0 0
0 1 2
0 3 4

È 

Î 
Í 

˘ 

˚ 
˙  and 

  
b =

5
1
0

È 

Î 
Í 

˘ 

˚ 
˙ , calculate the

solution x*.

6. The Gauss Elimination Method for Constructing A-1

Define the following two elementary row operations:

(i) add a scalar times a row of a matrix to another row of a matrix and

(ii) multiply a row of a matrix by a nonzero scalar.

The above two types of elementary row operations can be applied to a square
matrix A in order to determine whether A-1 exists and if A-1 exists, these
operations can be used to construct an effective method for actually constructing
A-1.

Recall the Gaussian algorithm in section 3 above which used elementary row
operations of type (i) above to reduce A down to an upper triangular matrix U.
If any of the diagonal elements of U are equal to zero; i.e., we have uii = 0 for
some i, then

|A| =   Pi=1
N uii = 0

and the results in the previous section tell us that A-1 cannot exist.

However, if all of the uii ≠"0, then we can continue to use elementary row
operations of the first type to further reduce U into a diagonal matrix, say

(17)

  

D =

u11 0 . . . 0
0 u22 . . . 0
:.
0 0 . . . uNN

È 

Î 

Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 

.

Finally, once A has been reduced to the form (17), we can apply type (ii)
elementary row operations and reduce the diagonal matrix to the N by N
identity matrix IN.
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Each of the two types of elementary row operations can be represented by
premultiplying A by an N by N matrix.  The operation of adding k times row i of
A to row j can be accomplished by premultiplying A by the following matrix:

(18) E = IN + k ej   ei
T ; i ≠ j.

Note that E is lower triangular if i < j and is upper triangular if i > j.  In either
case, |E| = 1.

The operation of multiplying the ith row of A by k ≠"0 can be accomplished by
premultiplying A by the diagonal matrix

(19)

  

D ≡

1 0 . . . 0
0 1 . . . 0
:.
0 0,k . . . 0
:.
0 0 . . . 1

È 

Î 

Í 
Í 
Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 
˙ 
˙ 

¨  ith row; i.e., djj = 1 if i ≠ j and dii = k.

Note that the determinant of D equals k"≠ 0.

In the case where |A| ≠ 0, we can premultiply A by a series of elementary row
matrices of the form (18) and (19), say En, En-1, . . ., E1 such that the transformed
A is reduced to the identity matrix; i.e., we have

(20) En, En-1, . . ., E1 A = IN

Thus B ≡ (En, En-1, . . ., E1) is a left inverse for A by the definition of a left inverse.

To construct B, we need only apply the elementary row operation matrices En,
En-1, . . ., E1 to IN: i.e.,

(21) B = A-1 ≡ En, En-1, . . ., E1  IN.

Thus as we reduce A to IN by means of elementary row operations, apply the
same elementary row operations to IN and in the end, IN will be transformed into
A-1.

Example:

  
A ≡

1, 2
3, 4

È 
Î 

˘ 
˚ 
,  

  
I2 ≡ 1 0

0 1
È 
Î 

˘ 
˚ 

Take -3 times row 1 and add to row 2; get:
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1, 2
0, -2

È 
Î 

˘ 
˚ 

 
  

1 0
-3 1

È 
Î 

˘ 
˚ 
.

Multiply the second row by -1/2; get:

  
1, 2
0, 1

È 
Î 

˘ 
˚   

1, 0
3
2 , - 1

2

È 

Î Í 
˘ 

˚ ˙ .

Now add -2 times row 2 to row 1; get:

  
1, 0
0, 1

È 
Î 

˘ 
˚   

-2, 1
3
2 , - 1

2

È 

Î Í 
˘ 

˚ ˙ = A-1.

Check:  
  
A• A-1 = 1 2

3 4
È 
Î 

˘ 
˚   

-2 1
3
2 - 1

2
È 
Î Í 

˘ 
˚ ˙ =

-2 + 3 1- 1
-6 + 6 1

È 
Î 

˘ 
˚ 

= 1 0
0 1

È 
Î 

˘ 
˚ 

= I2.

Now each elementary operation can be represented by means of a matrix; i.e., the
first elementary row operation can be represented by the matrix E1:

  
E1 ≡

1, 0
-3, 1

È 
Î 

˘ 
˚ 

 and 
  
E1 A =

1, 0
-3, 1

È 
Î 

˘ 
˚ 

1, 2
3, 4

È 
Î 

˘ 
˚ 

=
1, 2
0, -2

È 
Î 

˘ 
˚ 
.

The second elementary row operation matrix is E2:

  
E2 ≡

1, 0
0, - 1

2

È 

Î Í 
˘ 

˚ ˙  and 
  
E2 (E1A) =

1, 0
0, - 1

2

È 

Î Í 
˘ 

˚ ˙ 
1, 2
0, -2

È 
Î 

˘ 
˚ 

=
1, 2
0, 1

È 
Î 

˘ 
˚ 
.

The final elementary row operation matrix is E3:

  
E3 ≡

1, -2
0, 1

È 
Î 

˘ 
˚ 
 and 

  
E3 (E2E1A) =

1, -2
0, 1

È 
Î 

˘ 
˚ 

1, 2
0, 1

È 
Î 

˘ 
˚ 

=
1, 0
0, 1

È 
Î 

˘ 
˚ 
.

Thus we have E3(E2(E1 A))) = (E3 E2 E1)A = I2.  Thus E3 E2 E1 is a left inverse for
A and by the results in the previous section is also the unique right inverse.

Problem 13:  Let A be a 2 by N matrix.  Find a sequence of elementary row
operations of the form defined by (i) and (ii) above that will interchange the rows
of A; i.e., transform 

  
A ≡

A1•
A2•

È 
Î 

˘ 
˚ 

 into 
  

A2•
A1•

È 
Î 

˘ 
˚ 

 using the two elementary row
operations that we have defined.  Hint:  four elementary row operations will be
required.


