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4. Determinants and the Inverse of a Square Matrix

In this section, we are going to use our knowledge of determinants and their
properties to derive an explicit formula for the inverse of a square matrix A
provided that |A| = 0. Before we do this, we need one additional property of
determinants which is a consequence of our Gaussian algorithm for computing
the value of a determinant.

Lemma 8: Suppose the N by N matrix A has the following block upper
triangular form:

_[ a, bT]
Ao <

where a is a scalar, b is an N-1 dimensional column vector and C is an N-1 by N-
1 matrix. Then the determinant of A is equal to a times the determinant of C; i.e.,

4) lAl=lal ICl=alCl.

Proof: The Guassian algorithm explained in the previous section can be used to
calculate the determinant of A. For Stage 1 of the algorithm, we do not have to
do anything: A is already in the form that is required at the end of Stage 1. Thus
stages 2 to N-1 of the algorithm reduce the matrix C into an upper triangular
matrix U say. Thus we have

Ui, U1, .-y U1, N-1
0 Uoo, ..., Uo N-1
(5) ICI=IUIl=| . ' =Uuqqup) ... UN-1N-1-
O, 0, .-+, UN-1,N-1

At the same time, we have the following formula for [Al:

a, bl' bz, “ ey bN—l
O, uq1, Ui, ... uLN_l
(6) Al = : =au11...uN_1,N_1=a|C|

O, 0, O, ..oy uN_llN_l

where the last equality in (6) follows from (5).
Q.E.D.

Corollary: Suppose the N by N matrix A has the following block, lower
triangular form:

) As{g Oﬁc—l]. Then
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(8) lAl=lal ICl =alCl.

Proof: Let A be defined by (7). Then AT has the form that is required to apply
Lemma (8). Thus we have, using Lemma (2),

Al = 1AT| =alCT]| using Lemma (8)
=alC| using Lemma (2)

which is the desired result.
Q.ED.

The next Lemma requires two definitions. Let A be a square N by N matrix.

Definition: A(i,j) denotes the ijth minor of the matrix A and it is the determinant
of the N-1 by N-1 submatrix of A which has deleted row i and column j.

Definition: Aj = (-1 A(j, j) denotes the ijth cofactor of the matrix A; it is equal
to the ijth minor of A; it is equal to the ijth minor of A times minus one raised to
the power i+.

Examples: A=[311 212]
a1 an|

A11=(-1)*lap =ap
Ap =(-1)2*2aj1 = a1
A2 = (-1)1*2 ap1 = -ay;
Az1 = (-1)1*2ajp =-ay;

[a11 app  aps]
A=lap ap an|
|a31 aszx ass|

dr1  app
31 asp

dp1 dp3
d31 ass

dpy  dAp3
dzp ass

A11 — (_1)1+1 : A12 — (_1)1+2 ; A13 — (_1)1+3 :

Lemma (9): Expansion by Cofactors along the First Row:
) Al =aj1 A11 +a12 A2+ ... +aiN AIN

Proof: Let A = [ajj] be an N by N matrix and let the N dimensional unit vectors be
denoted by the columns

18
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It can be seen that the first row of the matrix A can be written as
Zg\il aj; ejTEAl.. Thus we have

N T
Al. 2]':1 aij e]'

Asj.
(Al=| 2] B2
AN' AN’
ai]-e]-T
(10) - 3N At ki d fL 4
=2j=1| | making repeated use of Lemma (4).
Ane

The first of the N determinants on the right hand side of (10) can be written as

Eﬂ 0 ..., 0 R R
~ ~ ~ =ad11|{ve2, -« /N0
aq Aw, ., Al N
using the Corollary to Lemma (8)
(11) = a11 A(l, 1)
=a11 A1l

where A.j is the jth column of A after dropping the first row of A, forj=1,2, ...,
N.

The second of the N determinants on the right hand side of (10) can be written as

LAO a12 0 . 0
.1 A.z A.3 o o A.N

where we have interchanged the first two columns of the first matrix in the

second matrix and hence by Lemma (5) we must multiply by -1 to preserve the
equality

a, 0 0 ... 0

Ay Aq Ay ... A

= (-1) a12 IAol/An?), Y’ A.N

by the Corollary to Lemma (8)

=(-1) a1p A(1,2) by the definition of the minor A(1,2)
=(-1)2t1 a1y A(1,2) multiplying by (-1)2
=a1 A by the definition of the cofactor A1».
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The third of the N determinants on the right hand side of (10) can be written as:

\AO 0 a3 0 ce 0
o]_ Aoz A.3 A.4 PR A.N

where we have made 2 column interchanges to move the original third column
first to column 2 and then to column 1

a3 0 0 0 0

- (-1 5
Ao3 Aol A .2 A.4 co e A.N

=(-1)2 a13 IAol,A.z,A.3,A.4,A.5, - A'N

by the Corollary to Lemma (8)

=ay3(-1)%2 A(1,3 by the definition of the minor A(1,3)
=ay3 (-1)3+1 A(1,3) multiplying by (-1)2
=a13 A1z by the definition of the cofactor Aja.

Continuing on in the same way for the remaining N-3 terms on the right hand
side of (10), we see that formula (9) results.
QE.D.

Lemma(10): Expansion by Cofactors along the ith Row:
(12)  TAl =aj1 Aj1 +aip Aip + ... + aiN AiN fori=1,2,... N.
Proof: If i =1, Lemma (10) reduces to Lemma (9). Fori>1, we makei- 1 row

interchanges to move the ith row up to the first row and then we apply Lemma
(9). Thus we have

A
Ay
A.l' Aj.
lAl=|Aj. |= (—1)i_1 A-' . because there are i - 1 row interchanges
. 1—-1°®
: i+le
AN. :
Ane

= (- i 1a1] - 1,])JL applying Lemma (9)
j=

N

= 3 ajjAjj using the definition of the cofactor Ajj.
=1

QED.

Corollary to Lemma (10): aj1 Aj1 + a2 Aig + ... + ajN AiN =0 if i=j.
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[Age1 ]
Proof Let A=| * |
[

ANe |

Suppose we replace the ith row of the matrix A with the jth row of A where i =j.
Then by lemma (1), we have

0=| : [< ith row has been replaced by jth row.

=ajl Aj1+ajp App+...+a jN AjN using lemma (10) except that the numbers
ail, a2, - - ., aiN have been replaced by aj1, aj2, - - - AN-
Q.E.D.

Lemma (10) and its corollary enable us to calculate a right inverse of an N by N
matrix A provided that Al =0.

Lemma (11): If A is an N by N matrix and | Al = 0, then a right inverse for A,
say Aﬁl, given by

T
[An  Aw] [Alr A - AN
A_1_| |‘?‘| Al |_L|A21 A22 A2N|
R a ANNI_IAI{ :
|7ar - AT AN1 AN2 -+ ANN

where Ajjis the ijth cofactor of the matrix A.
Proof: Take the ith row of A, A;., time the jth column of AR, We get

Ay A Ay [{&fifi=]by lemma (10)
aji AT tap ATt .- ta AT =
HLTAT T2 AT N Al [& if i = j by corollary to (10)

21
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10 ... 0
1 |0 1 O| 1
Thus we have A AR = . =IN and thus Ay is a right inverse for A
00 ... 1

by definition.
Q.E.D.

Problem 9: Calculate a right inverse for the following matrices:

1 0 0]
Lol 2] [a b] assuming ad - bc =0 and [0 1 2
[0 1]'[3 41/1c d g {0 3 4j-

Problem 10: Suppose that the N by N matrix A has a right inverse B and a left
inverse C. Show that B =C. Hint: You will need the results of problem 2.

Problem 11: If A is an N by N matrix and | A| =0, show that a left inverse exists.
(Note: Problem assumed the existence of a left inverse; here we have to show that
one exists. Hint: If Al =0, then | AT| = 0. Thus AT will have a right inverse by
lemma (11)).

Problem 12: If A is an N by N matrix and | Al = 0, show that there does not
exist an N by N matrix B such that AB = IN. Hint: You may find lemma (6)
useful.

The above results give us an easily? checked condition for the existence of an
inverse matrix for an N by N matrix A: namely if Al =0, then a common right
and left inverse matrix exists which we will denote by A-l; If 1Al = 0, then
A1 does not exist. There is another convenient condition on an N by N matrix A
which will ensure that A-1 exists and we will develop it below after we discuss
Cramer's Rule.
5. Expansion by Cofactors along a column and Cramer's Rule.

Applying lemma (10) to AT yields the following equation:
(13)  |AT| =aj; A + agj Agj +. .. + anj AN for any column indexi=1,..., N

(i.e., we have simply interchanged row and column indices)

=|Al since |Al =1 AT].
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Now let us consider the following system of N simultaneous equations in N
[x1]

unknowns x =| * |:
[xn )
(14) Ax=Db where

A = N by matrix of coefficients

[bq]
b=| : | vector of constants.
|b

N
If |Al =0, the solution to (14) is given by

(15) AlAx=A1b

or Ix=A1b
or x*=A1b
T
[A11 -+ AIN]
|A21 A2N | .
| |
ANt - AN

[ Al

using lemma (11) (and problems 10 and 11; i.e. that left and right inverses exist
and coincide.)

(16) Therefore, x: = ith component of x

_ blAli +b2A2i +... +bNANi
- PN

(perform the relevant matrix multiplication)

C1AG A, AL b Ay - Al
- Al

Using (13) with the vector b replacing
the ith column of A fori=1,2,... N.
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That is x; may be found by replacing the ith column of the matrix A by the
column vector b, take the determinant of the resulting matrix and divide by the
determinant of the original matrix A. Result (16) is known as Cramer’s Rule.

| [5]
J and b= [(1) J, calculate the

OO
W= O
=N O

Problem 13: Given Ax = b where A E{

solution x*.

6. The Gauss Elimination Method for Constructing A-1

Define the following two elementary row operations:
(1) add a scalar times a row of a matrix to another row of a matrix and
(i)  multiply a row of a matrix by a nonzero scalar.

The above two types of elementary row operations can be applied to a square
matrix A in order to determine whether A-l exists and if A-l exists, these
operations can be used to construct an effective method for actually constructing
AL

Recall the Gaussian algorithm in section 3 above which used elementary row
operations of type (i) above to reduce A down to an upper triangular matrix U.
If any of the diagonal elements of U are equal to zero; i.e., we have uj; = 0 for
some i, then

| Al :H%\il uﬁ=0

and the results in the previous section tell us that A-1 cannot exist.

However, if all of the uj =0, then we can continue to use elementary row
operations of the first type to further reduce U into a diagonal matrix, say

[llél 0 Ce 8 '|
(17) D - | : Uy ... |
O 0 . uNN

Finally, once A has been reduced to the form (17), we can apply type (ii)
elementary row operations and reduce the diagonal matrix to the N by N
identity matrix IN.
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Each of the two types of elementary row operations can be represented by
premultiplying A by an N by N matrix. The operation of adding k times row i of
A to row j can be accomplished by premultiplying A by the following matrix:

(18) E=In+keje;; i i,

Note that E is lower triangular if i < j and is upper triangular if i > j. In either
case, |El =1.

The operation of multiplying the ith row of A by k #0 can be accomplished by
premultiplying A by the diagonal matrix

o0 ... 0]
|O 1 ... O|
(199 D= IO 0k ... OI@ ith row; i.e., djjzlifi;éjand d;; = k.
|: |
o o ... 1]

Note that the determinant of D equals k= 0.

In the case where | Al =0, we can premultiply A by a series of elementary row
matrices of the form (18) and (19), say Ep, En-1, . . ., E1 such that the transformed
A is reduced to the identity matrix; i.e., we have

(200 En En1, ... E1A=IN

Thus B = (Ep, En-1, . . ., E1) is a left inverse for A by the definition of a left inverse.

To construct B, we need only apply the elementary row operation matrices Ep,
En-1,..., E1toIN:ie,

(21) B=A1l=E,En1, ..., E I\

Thus as we reduce A to IN by means of elementary row operations, apply the
same elementary row operations to Iy and in the end, IN will be transformed into
AL

Example:

A=l ap = 1]

Take -3 times row 1 and add to row 2; get:
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[ 07

1
3 -3)

Now add -2 times row 2 to row 1; get:

11, 0] 2 L1,

10 1] 120 -2

Checke A. A-L o1 21[2 L]_[2+3 1-1]_71 0]_;
DA =3 4] % -3 —[—6+6 1 ]—[o 1]—2-

Now each elementary operation can be represented by means of a matrix; i.e., the
first elementary row operation can be represented by the matrix Ej:

B=l% Panaea-ly 00 - 3

The second elementary row operation matrix is Ep:

E; = 0, ‘%J and E; (E1A) = 0, _%J 0, 2|70, 1}

The final elementary row operation matrix is E3:

E3 = [S/ _1 ] and E3 (EZElA)= [(1): _12] [(1),, %-'

Thus we have E3(Ex(E1 A))) = (E3 Ep E1)A = 1. Thus E3 Ep Eq is a left inverse for
A and by the results in the previous section is also the unique right inverse.

Problem 13: Let A be a 2 by N matrix. Find a sequence of elementary row
operations of the form defined by (i) and (ii) above that will interchange the rows

A . Aj. .
of A; i.e., transform A = [ Azl] into [ Ai] using the two elementary row

operations that we have defined. Hint: four elementary row operations will be
required.
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