4. Determinants and the Inverse of a Square Matrix

In this section, we are going to use our knowledge of determinants and their properties to derive an explicit formula for the inverse of a square matrix A provided that $|\mathrm{A}| \neq 0$. Before we do this, we need one additional property of determinants which is a consequence of our Gaussian algorithm for computing the value of a determinant.

Lemma 8: Suppose the N by N matrix A has the following block upper triangular form:

$$
\mathrm{A} \equiv \frac{\square \mathrm{a},}{} \mathrm{~b}_{\mathrm{T}}^{\mathrm{T}} \square
$$

where a is a scalar, b is an $N-1$ dimensional column vector and C is an $N-1$ by $N-$ 1 matrix. Then the determinant of A is equal to a times the determinant of C;i.e.,

$$
\begin{equation*}
|\mathrm{A}|=|\mathrm{a}||\mathrm{C}|=\mathrm{a}|\mathrm{C}| . \tag{4}
\end{equation*}
$$

Proof: The Guassian algorithm explained in the previous section can be used to calculate the determinant of A. For Stage 1 of the algorithm, we do not have to do anything: A is already in the form that is required at the end of Stage 1. Thus stages 2 to $\mathrm{N}-1$ of the algorithm reduce the matrix C into an upper triangular matrix U say. Thus we have

$$
|\mathrm{C}|=|\mathrm{U}|=\left|\begin{array}{cccc}
u_{11}, & u_{12}, & \ldots, & u_{1, N \square 1} \tag{5}\\
0 & u_{22}, & \ldots, & u_{2, N \square 1} \\
\vdots & & & \\
0, & 0, & \ldots, & u_{N \square 1, N \square 1}
\end{array}\right|=u_{11} u_{22} \ldots u_{N \square 1, N \square 1} .
$$

At the same time, we have the following formula for $|\mathrm{A}|$:
(6) $\quad|\mathrm{A}|=\left|\begin{array}{ccccc}a, & b_{1}, & b_{2}, & \ldots, & b_{N \square 1} \\ 0, & u_{11}, & u_{12}, & \ldots, & u_{1, N \square 1} \\ \vdots & & & & \\ 0, & 0, & 0, & \ldots, & u_{N \square 1, N \square 1}\end{array}\right|=a u_{11} \ldots u_{N \square 1, N \square 1}=a|C|$
where the last equality in (6) follows from (5).
Q.E.D.

Corollary: Suppose the N by N matrix A has the following block, lower triangular form:

$$
\begin{equation*}
|\mathrm{A}|=|\mathrm{a}||\mathrm{C}|=\mathrm{a}|\mathrm{C}| \tag{8}
\end{equation*}
$$

Proof: Let A be defined by (7). Then A^{T} has the form that is required to apply Lemma (8). Thus we have, using Lemma (2),

$$
\begin{aligned}
|\mathrm{A}|=\left|\mathrm{A}^{\mathrm{T}}\right| & =\mathrm{a}\left|\mathrm{C}^{\mathrm{T}}\right| & & \text { using Lemma (8) } \\
& =\mathrm{a}|\mathrm{C}| & & \text { using Lemma (2) }
\end{aligned}
$$

which is the desired result.
Q.E.D.

The next Lemma requires two definitions. Let A be a square N by N matrix.
Definition: $\mathrm{A}(\mathrm{i}, \mathrm{j})$ denotes the ijth minor of the matrix A and it is the determinant of the $\mathrm{N}-1$ by $\mathrm{N}-1$ submatrix of A which has deleted row i and column j.

Definition: $\mathrm{A}_{\mathrm{ij}} \equiv(-1)^{\mathrm{i}+\mathrm{j}} \mathrm{A}(\mathrm{i}, \mathrm{j})$ denotes the ijth cofactor of the matrix A ; it is equal to the $i j t h$ minor of A; it is equal to the $i j t h$ minor of A times minus one raised to the power $\mathrm{i}+\mathrm{j}$.

$$
\begin{aligned}
& \text { Examples: } \quad \mathrm{A}=\frac{\left.\begin{array}{ll}
\mathrm{a}_{11} & \mathrm{a}_{12} \square \\
\square_{21} & \mathrm{a}_{22}
\end{array}\right]}{} \\
& \mathrm{A}_{11}=(-1)^{1+1} \mathrm{a}_{22}=\mathrm{a}_{22} \\
& A_{22}=(-1)^{2+2} a_{11}=a_{11} \\
& A_{12}=(-1)^{1+2} a_{21}=-a_{21} \\
& A_{21}=(-1)^{1+2} a_{12}=-a_{12} ;
\end{aligned}
$$

$$
\begin{aligned}
& A_{11}=(\square 1)^{1+1}\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right| ; A_{12}=(\square 1)^{1+2}\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right| ; A_{13}=(\square 1)^{1+3}\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right| ; \text { etc. }
\end{aligned}
$$

Lemma (9): Expansion by Cofactors along the First Row:

$$
\begin{equation*}
|\mathrm{A}|=\mathrm{a}_{11} \mathrm{~A}_{11}+\mathrm{a}_{12} \mathrm{~A}_{12}+\ldots+\mathrm{a}_{1 \mathrm{~N}} \mathrm{~A}_{1 \mathrm{~N}} \tag{9}
\end{equation*}
$$

Proof: Let $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]$ be an N by N matrix and let the N dimensional unit vectors be denoted by the columns

It can be seen that the first row of the matrix A can be written as $\square_{j=1}^{N} a_{1 j} e_{j}^{T} \equiv A_{1} .$. Thus we have

$$
\begin{align*}
|\mathrm{A}|=\left|\begin{array}{c}
\mathrm{A}_{1} \cdot \\
\mathrm{~A}_{2} \cdot \\
\vdots \\
\mathrm{~A}_{\mathrm{N}} \cdot
\end{array}\right| & =\left|\begin{array}{c}
\square \mathrm{N}_{\mathrm{j}=1} \mathrm{a}_{\mathrm{ij}} \mathrm{e}_{\mathrm{j}}^{\mathrm{T}} \\
\mathrm{~A}_{2} \bullet \\
\vdots \\
\mathrm{~A}_{\mathrm{N} \cdot}
\end{array}\right| \\
& =\square_{\mathrm{j}=1}^{\mathrm{N}}\left|\begin{array}{c}
\mathrm{a}_{\mathrm{ij}} \mathrm{e}_{\mathrm{j}}^{\mathrm{T}} \\
\mathrm{~A}_{2 \cdot} \\
\vdots \\
\mathrm{~A}_{\mathrm{N}} \cdot
\end{array}\right| \quad \text { making repeated use of Lemma (4). } \tag{10}
\end{align*}
$$

The first of the N determinants on the right hand side of (10) can be written as

$$
\begin{align*}
&\left|\begin{array}{cccc}
a_{11} & 0, & \ldots, & 0 \\
\tilde{\mathrm{~A}}_{\bullet 1} & \tilde{\mathrm{~A}}_{\bullet 2}, & \ldots, & \tilde{\mathrm{~A}}_{\bullet \mathrm{N}}
\end{array}\right|=\mathrm{a}_{11}\left|\tilde{\mathrm{~A}}_{\bullet 2}, \ldots, \tilde{\mathrm{~A}}_{\bullet \mathrm{N}}\right| \\
& \text { using the Corollary to Lemma (8) } \\
&=\mathrm{a}_{11} \mathrm{~A}(1,1) \tag{11}\\
&=\mathrm{a}_{11} \mathrm{~A}_{11}
\end{align*}
$$

where $\tilde{A}_{\bullet j}$ is the j th column of A after dropping the first row of A, for $j=1,2, \ldots$, N.

The second of the N determinants on the right hand side of (10) can be written as

$$
\left|\begin{array}{ccccc}
0 & a_{12} & 0 & \ldots & 0 \\
\tilde{A} \cdot 1 & \tilde{A}_{\bullet 2} & \tilde{A}_{\bullet 3} & \ldots & \tilde{A}_{\bullet N}
\end{array}\right|=\square\left|\begin{array}{ccccc}
a_{12} & 0 & 0 & \ldots & 0 \\
\tilde{A}_{\bullet 2} & \tilde{\mathrm{~A}}_{\bullet 1} & \tilde{\mathrm{~A}}_{\bullet 3} & \ldots & \tilde{\mathrm{~A}}_{\bullet \mathrm{N}}
\end{array}\right|
$$

where we have interchanged the first two columns of the first matrix in the second matrix and hence by Lemma (5) we must multiply by -1 to preserve the equality

$$
\begin{array}{ll}
=(-1) \mathrm{a}_{12}\left|\tilde{\mathrm{~A}}_{\cdot 1}, \tilde{\mathrm{~A}} \cdot 3, \ldots, \tilde{\mathrm{~A}}_{\cdot \mathrm{N}}\right| & \\
=(-1) \mathrm{a}_{12} \mathrm{~A}(1,2) & \\
=(-1)^{2+1} \mathrm{a}_{12} \mathrm{~A}(1,2) & \\
\text { by the Corollary to Lemma (8) } \\
=\mathrm{a}_{12} \mathrm{~A}_{12} & \\
\text { multiplying by }(-1)^{2} \\
\text { by the definition of the cofactor } \mathrm{A}_{12} .
\end{array}
$$

The third of the N determinants on the right hand side of (10) can be written as:
$\left|\begin{array}{cccccc}0 & 0 & \mathrm{a}_{13} & 0 & \ldots & 0 \\ \tilde{\mathrm{~A}} \cdot 1 & \tilde{\mathrm{~A}}_{\bullet 2} & \tilde{\mathrm{~A}}_{\bullet 3} & \tilde{\mathrm{~A}}_{\bullet 4} & \ldots & \tilde{\mathrm{~A}}_{\bullet \mathrm{N}}\end{array}\right|=(\square 1)^{2}\left|\begin{array}{cccccc}\mathrm{a}_{13} & 0 & 0 & 0 & \ldots & 0 \\ \tilde{\mathrm{~A}}_{\bullet 3} & \tilde{\mathrm{~A}}_{\bullet 1} & \tilde{\mathrm{~A}}_{\bullet 2} & \tilde{\mathrm{~A}}_{\bullet 4} & \ldots & \tilde{\mathrm{~A}}_{\bullet \mathrm{N}}\end{array}\right|$
where we have made 2 column interchanges to move the original third column first to column 2 and then to column 1

$$
\begin{array}{ll}
=(-1)^{2} \mathrm{a}_{13} \mid \tilde{\mathrm{A}} \cdot 1, \tilde{\mathrm{~A}} \cdot 2, \tilde{\mathrm{~A}} \cdot 3, \tilde{\mathrm{~A}} \cdot 4, \tilde{\mathrm{~A}} \cdot 5
\end{array}, \ldots, \tilde{\mathrm{~A}}_{\bullet \mathrm{N}} \left\lvert\, \begin{aligned}
& \text { by the Corollary to Lemma }(8) \\
& =\mathrm{a}_{13}(-1)^{2} \mathrm{~A}(1,3) \\
& =\mathrm{a}_{13}(-1)^{3+1} \mathrm{~A}(1,3) \\
& =\mathrm{a}_{13} \mathrm{~A}_{13}
\end{aligned} \quad \begin{aligned}
& \text { by the definition of the minor } \mathrm{A}(1,3) \\
& \text { multiplying by }(-1)^{2}
\end{aligned}\right.
$$

Continuing on in the same way for the remaining N-3 terms on the right hand side of (10), we see that formula (9) results.
Q.E.D.

Lemma(10): Expansion by Cofactors along the ith Row:

$$
\begin{equation*}
|A|=a_{i 1} A_{i 1}+a_{i 2} A_{i 2}+\ldots+a_{i N} A_{i N} \quad \text { for } i=1,2, \ldots, N \tag{12}
\end{equation*}
$$

Proof: If $\mathrm{i}=1$, Lemma (10) reduces to Lemma (9). For $\mathrm{i}>1$, we make $\mathrm{i}-1$ row interchanges to move the ith row up to the first row and then we apply Lemma (9). Thus we have

$$
\begin{aligned}
& |A|=\left|\begin{array}{c}
A_{1} \bullet \\
\vdots \\
A_{i} \bullet \\
\vdots \\
A_{N} \bullet
\end{array}\right|=(\square 1)^{i} \square 1\left|\begin{array}{c}
A_{i} \bullet \\
A_{1} \bullet \\
A_{2} \\
\vdots \\
A_{i}, 1 \bullet \\
A_{i+1} \bullet \\
\vdots \\
A_{N} \bullet
\end{array}\right| \\
& =(\square 1)^{\mathrm{i} \square 1}{\underset{\square}{\square}=1}_{\square}^{\mathrm{N}} \mathrm{~N}_{\mathrm{ij}} \mathrm{a}_{\mathrm{ij}}(\square 1)^{\mathrm{j}+1} \mathrm{~A}(\mathrm{i}, \mathrm{j}) \square_{\square}^{\square} \text { applying Lemma (9) } \\
& =\prod_{j=1}^{N} a_{i j} A_{i j} \\
& \text { because there are i-1 row interchanges } \\
& \text { using the definition of the cofactor } \mathrm{A}_{\mathrm{ij}} \text {. } \\
& \text { Q.E.D. }
\end{aligned}
$$

Corollary to Lemma (10): $a_{j 1} A_{i 1}+a_{j 2} A_{i 2}+\ldots+a_{j N} A_{i N}=0$ if $i \neq j$.

Proof: Let $\begin{aligned} & \square \mathrm{A}_{1} \cdot \bullet \\ & \square \square \\ & \square \mathrm{~A}_{\mathrm{N}} \cdot \square\end{aligned}$
Suppose we replace the i th row of the matrix A with the j th row of A where $i \neq j$. Then by lemma (1), we have
$0=\left|\begin{array}{c}A_{1} \bullet \\ \vdots \\ A_{j} \bullet \\ \vdots \\ A_{j} \bullet \\ \vdots \\ A_{N} \bullet\end{array}\right| \square$ ith row has been replaced by jth row.
$=a_{j 1} A_{i 1}+a_{j 2} A_{i 2}+\ldots+a_{j N} A_{i N}$ using lemma (10) except that the numbers $a_{i l}, a_{i 2}, \ldots, a_{i N}$ have been replaced by $a_{j 1}, a_{j 2}, \ldots, a_{j N}$.
Q.E.D.

Lemma (10) and its corollary enable us to calculate a right inverse of an N by N matrix A provided that $|\mathrm{A}| \neq 0$.

Lemma (11): If A is an N by N matrix and $|A| \neq 0$, then a right inverse for A, say A_{R}^{\square}, given by

where $A_{i j}$ is the $i j t h$ cofactor of the matrix A.
Proof: Take the ith row of $A, A_{i} \bullet$, time the jth column of A_{R}^{\square}. We get
$a_{i 1} \frac{A_{j 1}}{|A|}+a_{i 2} \frac{A_{j 2}}{|A|}+\ldots+a_{i N} \frac{A_{j N}}{|A|}=\begin{aligned} & \frac{|A|}{|A|} \text { if } i\end{aligned}=j$ by lemma (10)
 by definition.

> Q.E.D.

Problem 9: Calculate a right inverse for the following matrices:

Problem 10: Suppose that the N by N matrix A has a right inverse B and a left inverse C. Show that $\mathrm{B}=\mathrm{C}$. Hint: You will need the results of problem 2.

Problem 11: If A is an N by N matrix and $|\mathrm{A}| \neq 0$, show that a left inverse exists. (Note: Problem assumed the existence of a left inverse; here we have to show that one exists. Hint: If $|\mathrm{A}| \neq 0$, then $\left|\mathrm{A}^{\mathrm{T}}\right| \neq 0$. Thus A^{T} will have a right inverse by lemma (11)).

Problem 12: If A is an N by N matrix and $|A|=0$, show that there does not exist an N by N matrix B such that $A B=I_{N}$. Hint: You may find lemma (6) useful.

The above results give us an easily? checked condition for the existence of an inverse matrix for an N by N matrix A : namely if $|A| \neq 0$, then a common right and left inverse matrix exists which we will denote by A^{-1}; If $|A|=0$, then A^{-1} does not exist. There is another convenient condition on an N by N matrix A which will ensure that A^{-1} exists and we will develop it below after we discuss Cramer's Rule.

5. Expansion by Cofactors along a column and Cramer's Rule.

Applying lemma (10) to A^{T} yields the following equation:

$$
\begin{equation*}
\left|\mathrm{A}^{\mathrm{T}}\right|=\mathrm{a}_{\mathrm{l}} \mathrm{~A}_{\mathrm{li}}+\mathrm{a}_{2 \mathrm{i}} \mathrm{~A}_{2 \mathrm{i}}+\ldots+\mathrm{a}_{\mathrm{Ni}} \mathrm{~A}_{\mathrm{Ni}} \text { for any column index } \mathrm{i}=1, \ldots, \mathrm{~N} \tag{13}
\end{equation*}
$$

(i.e., we have simply interchanged row and column indices)

$$
=|\mathrm{A}| \text { since }|\mathrm{A}|=\left|\mathrm{A}^{\mathrm{T}}\right| \text {. }
$$

Now let us consider the following system of N simultaneous equations in N $\square \mathrm{x}_{1}$ [
unknowns $x=\square$: $[$: $\mathrm{Br}_{\mathrm{N}} \mathrm{E}$
(14) $A x=b$ where
$\mathrm{A}=\mathrm{N}$ by matrix of coefficients
$\square \mathrm{b}_{1} \square$
$b=\square: \square$ vector of constants.
$ظ_{\mathrm{N}} \mathrm{E}$
If $|A| \neq 0$, the solution to (14) is given by

$$
\begin{equation*}
\mathrm{A}^{-1} \mathrm{Ax}=\mathrm{A}^{-1} \mathrm{~b} \tag{15}
\end{equation*}
$$

or $\quad I x=A^{-1} b$
or $\quad x^{*}=A^{-1} b$

$$
\begin{array}{rlrl}
& \begin{array}{lll}
\mathrm{A}_{11} & \ldots & \mathrm{~A}_{1 \mathrm{~N}} \square^{\mathrm{T}} \\
\mathrm{~A}_{21} & \ldots & \mathrm{~A}_{2 \mathrm{~N}} \square_{\mathrm{b}} \\
\square & & \square^{\mathrm{b}} \\
\vdots & \frac{\mathrm{~A}_{\mathrm{N} 1}}{} & \ldots \\
\mathrm{~A}_{\mathrm{NN}} \square
\end{array} \\
\mid \mathrm{Al}
\end{array}
$$

using lemma (11) (and problems 10 and 11; i.e. that left and right inverses exist and coincide.)
(16) Therefore, $x_{i}^{*}=i$ th component of x
$=\frac{\mathrm{b}_{1} \mathrm{~A}_{1 \mathrm{i}}+\mathrm{b}_{2} \mathrm{~A}_{2 \mathrm{i}}+\ldots+\mathrm{b}_{\mathrm{N}} \mathrm{A}_{\mathrm{Ni}}}{|\mathrm{A}|}$
(perform the relevant matrix multiplication)
$=\frac{\left|\mathrm{A} \cdot 1, \mathrm{~A} \cdot 2, \ldots, \mathrm{~A} \cdot \mathrm{i} \cap 1, \mathrm{~b}, \mathrm{~A} \cdot{ }_{\cdot i+1}, \ldots, \mathrm{~A} \cdot \mathrm{~N}\right|}{|\mathrm{A}|}$
Using (13) with the vector b replacing the ith column of A for $\mathrm{i}=1,2, \ldots, \mathrm{~N}$.

That is x_{i} may be found by replacing the ith column of the matrix A by the column vector b, take the determinant of the resulting matrix and divide by the determinant of the original matrix A. Result (16) is known as Cramer's Rule.
 solution x^{*}.

6. The Gauss Elimination Method for Constructing $\mathbf{A}^{\mathbf{- 1}}$

Define the following two elementary row operations:
(i) add a scalar times a row of a matrix to another row of a matrix and
(ii) multiply a row of a matrix by a nonzero scalar.

The above two types of elementary row operations can be applied to a square matrix A in order to determine whether A^{-1} exists and if A^{-1} exists, these operations can be used to construct an effective method for actually constructing A^{-1}.

Recall the Gaussian algorithm in section 3 above which used elementary row operations of type (i) above to reduce A down to an upper triangular matrix U . If any of the diagonal elements of U are equal to zero; i.e., we have $u_{i i}=0$ for some i, then

$$
|\mathrm{A}|=\square_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{u}_{\mathrm{ii}}=0
$$

and the results in the previous section tell us that A^{-1} cannot exist.
However, if all of the $u_{i i} \neq 0$, then we can continue to use elementary row operations of the first type to further reduce U into a diagonal matrix, say

$$
\mathrm{D}=\begin{array}{ccccc}
\begin{array}{llll}
\mathrm{u}_{11} & 0 & \ldots & 0 \\
\square^{0} & \mathrm{u}_{22} & \ldots & 0 \\
\square \\
\square & & & \\
\square \\
\square & 0 & \ldots & u_{\mathrm{NN}} \\
\square
\end{array} \tag{17}
\end{array}
$$

Finally, once A has been reduced to the form (17), we can apply type (ii) elementary row operations and reduce the diagonal matrix to the N by N identity matrix I_{N}.

Each of the two types of elementary row operations can be represented by premultiplying A by an N by N matrix. The operation of adding k times row i of A to row j can be accomplished by premultiplying A by the following matrix:

$$
\begin{equation*}
\mathrm{E}=\mathrm{I}_{\mathrm{N}}+\mathrm{ke}_{\mathrm{j}} \mathrm{e}_{\mathrm{i}}^{\mathrm{T}} ; \quad \mathrm{i} \neq \mathrm{j} \tag{18}
\end{equation*}
$$

Note that E is lower triangular if $\mathrm{i}<\mathrm{j}$ and is upper triangular if $\mathrm{i}>\mathrm{j}$. In either case, $|\mathrm{E}|=1$.

The operation of multiplying the ith row of A by $\mathrm{k} \neq 0$ can be accomplished by premultiplying A by the diagonal matrix

Note that the determinant of D equals $\mathrm{k} \neq 0$.
In the case where $|\mathrm{A}| \neq 0$, we can premultiply A by a series of elementary row matrices of the form (18) and (19), say $\mathrm{E}_{\mathrm{n}}, \mathrm{E}_{\mathrm{n}-1}, \ldots, \mathrm{E}_{1}$ such that the transformed A is reduced to the identity matrix; i.e., we have

$$
\begin{equation*}
E_{n}, E_{n-1}, \ldots, E_{1} A=I_{N} \tag{20}
\end{equation*}
$$

Thus $B \equiv\left(E_{n}, E_{n-1}, \ldots, E_{1}\right)$ is a left inverse for A by the definition of a left inverse.
To construct B, we need only apply the elementary row operation matrices E_{n}, $\mathrm{E}_{\mathrm{n}-1}, \ldots, \mathrm{E}_{1}$ to I_{N} : i.e.,
(21) $B=A^{-1} \equiv E_{n}, E_{n-1}, \ldots, E_{1} I_{N}$.

Thus as we reduce A to I_{N} by means of elementary row operations, apply the same elementary row operations to I_{N} and in the end, I_{N} will be transformed into A^{-1}.

Example:

$A \equiv \begin{array}{ll}\square 1, & 2 \square \\ \square, & 4 \square\end{array} I_{2} \equiv \frac{\square}{\square} \quad 1 \quad 1 \square$
Take -3 times row 1 and add to row 2; get:

Multiply the second row by $-1 / 2$; get:

Now add -2 times row 2 to row 1; get:
$\begin{array}{lll}\square, & 0 \square & \square 2, \\ \square & 1 \square \square \\ \text { १. } & 1 \square & \square \frac{3}{2}, \\ \square \frac{1}{2} \square\end{array}=A^{\square 1 .}$

Now each elementary operation can be represented by means of a matrix; i.e., the first elementary row operation can be represented by the matrix E_{1} :
$\mathrm{E}_{1} \equiv \begin{array}{llll}\square 1, & 0 \square \\ \square \beta, & 1 \square\end{array}$ and $\mathrm{E}_{1} \mathrm{~A}=\begin{array}{lll}\square 1, & 0 \square \square 1, & 2 \square=\square 1, \\ \square \beta & 1 \square \square \square & 2 \square \\ \square \square & 4 \square & \square\end{array}$
The second elementary row operation matrix is E_{2} :

The final elementary row operation matrix is E_{3} :

Thus we have $\left.E_{3}\left(E_{2}\left(E_{1} A\right)\right)\right)=\left(E_{3} E_{2} E_{1}\right) A=I_{2}$. Thus $E_{3} E_{2} E_{1}$ is a left inverse for A and by the results in the previous section is also the unique right inverse.

Problem 13: Let A be a 2 by N matrix. Find a sequence of elementary row operations of the form defined by (i) and (ii) above that will interchange the rows of A; i.e., transform $A \equiv \stackrel{A_{1}}{A_{2}} \cdot \square$ into $\quad \stackrel{A_{2}}{A_{2}} \cdot \square$ using the two elementary row operations that we have defined. Hint: four elementary row operations will be required.

