7. Linear Independence and the Rank of a Matrix

The results in this section provide another condition which is necessary and sufficient for the existence of the inverse for a square matrix.

Let $\mathrm{A} \equiv\left[\mathrm{A}_{\cdot 1}, \mathrm{~A}_{\bullet 2}, \ldots, \mathrm{~A}_{\cdot}\right]$ be an M by N matrix. We say that the N column vectors of A are linearly independent if the only solution x to

$$
\begin{equation*}
A x=0_{M} \tag{22}
\end{equation*}
$$

is $x=0_{N}$. If a solution vector $x \neq 0_{N}$ to (22) exists, then we say that the columns of A are linearly dependent.

How can we determine whether the columns of A are linearly dependent or independent? The Gaussian triangularization algorithm developed in section 3 above can be used to answer this question.

Consider Stage 1 of the Guassian algorithm. If we end up in case (iii) (so that $\mathrm{A}_{1} \cdot$ $=0_{M}$), then we can satisfy (22) by choosing $x=e_{1}$ (where $e_{1} \equiv\left(1,0_{M \square 1}^{T}\right)^{T}$ is the first unit vector of dimension M). In this case where $A_{1}=0 \mathrm{M}$, we can immediately deduce that the columns of A are linearly dependent.

Now assume that cases (i) or (ii) occurred in Stage 1 of the algorithm and we move on to Stage 2 (assuming N and M are greater than one) of the algorithm. If case (iii) occurs in Stage 2, then at the end of Stage 2, the first two columns of the transformed A matrix have the following form:

$$
\begin{array}{lc}
\square_{11}, & \mathrm{u}_{12} \square \tag{23}\\
\mathrm{Q}_{\mathrm{M} \square 1}, & 0_{\mathrm{M} \square 1} \square
\end{array}
$$

where $u_{11} \neq 0$. Consider solving the following equation:

$$
\begin{equation*}
\mathrm{u}_{11} \mathrm{x}_{1}+\mathrm{u}_{12} \mathrm{x}_{2}=0 \tag{24}
\end{equation*}
$$

If we set $x_{2}=1$, then since $u_{11} \neq 0$, we can solve (24) for x_{1} as follows:

$$
\begin{equation*}
\mathrm{x}_{1}=-\mathrm{u}_{12} / \mathrm{u}_{11} . \tag{25}
\end{equation*}
$$

Let the M by M matrix E denote the product of the elementary row operation matrices that transform the first two columns of A into the case (iii) upper triangular matrix defined by (23). Now premultiply both sides of (22) by E to obtain:
(26) $\quad \mathrm{EAx}=\mathrm{E} 0_{\mathrm{M}}=0_{\mathrm{M}}$.

It can be seen, using (23) - (25), that if we choose x to be the following vector:

$$
\begin{equation*}
x^{*} \equiv-\left(u_{12} / u_{11}\right) e_{1}+e_{2} \neq 0_{N}, \tag{27}
\end{equation*}
$$

then x^{*} satisfies (26). Recall from the previous section that each elementary row matrix that adds a multiple of one row to another row has a determinant equal to one. Since E is a product of these matrices, its determinant will also equal one. Hence E^{-1} exists and we can premultiply both sides of $E A x *=0_{M}$ by E^{-1} and conclude that $A x^{*}=0_{M}$ with $x^{*} \neq 0_{N}$. Thus if case (iii) occurs at the end of Stage 2 of the Gaussian triangularization algorithm, we can conclude that the columns of A are linearly dependent.

We now need to consider two cases dependent on whether the number of rows of $A(M)$ is greater or less than the number of columns of $A(N)$.

Case (1): $\mathrm{M} \geq \mathrm{N}$.
In this case, we follow the Gaussian algorithm through all N stages. If at the end of any stage (say stage i) of the algorithm, we find that $u_{i i}=0$, we can adapt the above stage 2 argument to show that there is a nonzero x^{*} vector (which has $x_{i}^{*}=$ 1 and $x_{j}^{*}=0$ for $j>i$) such that $A x^{*}=0_{M}$ and hence the columns of A are linearly dependent.

On the other hand, if all of the diagonal elements of the final upper triangular matrix are nonzero, then we can show that the columns of A are linearly independent. In this case, the final U matrix has the following form:

$\square_{\mathrm{i}=1}{ }^{\mathrm{N}} \mathrm{u}_{\mathrm{ii}} \neq 0$.

Let E represent the product of the elementary row matrices that transform A into the U defined by (28); i.e., we have
(29) $\quad \mathrm{EA}=\mathrm{U} \quad ;|\mathrm{E}|=1$.

Premultiply both sides of (22), $\mathrm{Ax}=0_{\mathrm{M}}$, by E to obtain:

$$
\begin{equation*}
\mathrm{EAx}=\mathrm{Ux}=\mathrm{E} 0_{\mathrm{M}}=0_{\mathrm{M}} \tag{30}
\end{equation*}
$$

Using (28), we see that the Nth equation in (31) is:

$$
\begin{equation*}
u_{N N} x_{N}=0 \tag{31}
\end{equation*}
$$

and since $u_{N N} \neq 0$ by hypothesis, we must have $\mathrm{x}_{\mathrm{N}}=0$. Now look at the $\mathrm{N}-1$ st equation in (30):

$$
\begin{equation*}
u_{\mathrm{N}-1, \mathrm{~N}-1} \mathrm{x}_{\mathrm{N}-1}+\mathrm{u}_{\mathrm{N}-1, \mathrm{~N}} \mathrm{x}=0 . \tag{32}
\end{equation*}
$$

Substituting $\mathrm{x}_{\mathrm{N}}=0$ into (32) yields

$$
\begin{equation*}
u_{N-1, N-1} x_{N-1}=0 \tag{33}
\end{equation*}
$$

and since $\mathrm{u}_{\mathrm{N}-1, \mathrm{~N}-1} \neq 0$ by hypothesis, we must have $\mathrm{x}_{\mathrm{N}-1}=0$. Continuing on in the same way, we deduce that the only x solution to (30) is $x^{*}=0_{N}$.

It is obvious that $\mathrm{x}^{*}=0_{\mathrm{N}}$ satisfies $\mathrm{Ax}=0_{\mathrm{M}}$. Could there be any other solution to $\mathrm{Ax}=0_{\mathrm{M}}$? Let $\mathrm{x}^{* *}$ be such that

$$
\begin{equation*}
A x^{* *}=0_{\mathrm{M}} . \tag{34}
\end{equation*}
$$

Premultiplying both sides of (34) by E leads to:

$$
\begin{equation*}
E A x^{* *}=U x^{* *}=0_{\mathrm{M}} . \tag{35}
\end{equation*}
$$

But the only solution to (35) is $\mathrm{x}^{* *}=0_{\mathrm{N}}$. Hence under our Case (1) hypothesis where $\mathrm{M} \geq \mathrm{N}$ and all $\mathrm{u}_{\mathrm{ii}} \neq 0, \mathrm{i}=1,2, \ldots, \mathrm{~N}$, we deduce that the columns of A are linearly independent. If any of the $\mathrm{u}_{\mathrm{ii}}=0$, then the columns of A are linearly dependent.

Case 2: $\mathrm{M}<\mathrm{N}$.
In this case, carry out the Gaussian triangularization procedure until we run out of rows. The final U matrix will have the following form:

$$
\mathrm{U}=\begin{array}{ccccccc}
\square \mathrm{u}_{11} & \mathrm{u}_{12} & \ldots & \mathrm{u}_{1 \mathrm{M}} & \mathrm{u}_{1 \mathrm{M}+1} & \ldots & \mathrm{u}_{1 \mathrm{~N}} \square \tag{36}\\
\square 0 & \mathrm{u}_{22} & \ldots & & \mathrm{u}_{2 \mathrm{M}+1} & \ldots & \mathrm{u}_{2 \mathrm{~N}} \\
\square & & & \mathrm{u}_{2 \mathrm{M}} & & & \\
\square & 0 & \ldots & \mathrm{u}_{\mathrm{MM}} & \mathrm{u}_{\mathrm{MM}+1} & \ldots & \mathrm{u}_{\mathrm{MN}}[
\end{array}
$$

If any of the $\mathrm{u}_{\mathrm{ii}}=0$, then we can adapt our previous arguments to show that the columns of A are linearly dependent. For example, suppose u_{22} is the first zero $u_{i i}$. Then the $x^{*} \neq 0_{N}$ defined by (27) will satisfy $A x^{*}=0_{M}$.

If $u_{i i} \neq 0$ for $i=1,2, \ldots, M$, then consider the equations $U x=0_{M}$. If we set x_{M+1}^{*} $=-1$ and $x_{M+2}^{*}=x_{M+3}^{*}=\ldots=x_{N}^{*}=0$, then the equations $U x=0_{N}$ reduce to

which can readily be solved for $\mathrm{x}_{1}^{*}, \ldots, \mathrm{x}_{\mathrm{M}}^{*}$; i.e.,

$$
\begin{align*}
\mathrm{x}_{\mathrm{M}}^{*} & =\mathrm{u}_{\mathrm{MM}+1} / \mathrm{u}_{\mathrm{MM}} ; \tag{38}\\
\mathrm{x}_{\mathrm{M} \square 1}^{*} & =\left[\mathrm{u}_{\mathrm{M} \square 1, \mathrm{M}+1} \square \mathrm{u}_{\mathrm{M} \square 1, \mathrm{M}^{\mathrm{x}}}{ }_{\mathrm{M}}^{*}\right] / \mathrm{u}_{\mathrm{M} \square 1, \mathrm{M} \square 1} ; \text { etc. }
\end{align*}
$$

The resulting $x^{*} \neq 0_{N}$ and hence we deduce that the columns of A are linearly dependent.

Thus if we are in Case (2), we inevitably deduce that the columns of A are linearly dependent.

Putting all of the above material together, we find that the columns of A are linearly dependent unless $\mathrm{M} \geq \mathrm{N}$ and the $\mathrm{N} \mathrm{u}_{\mathrm{ii}}$ elements in (28) are all nonzero. Only in this last case, are the columns of A linearly independent.

Definition: The rank of an N by M matrix is the maximal number of linearly independent columns which it contains.

Example the rank of | \square | 0 | $0 \square$ |
| :--- | :--- | :--- |
| $\boxed{\natural}$ | 1 | 0 | is 3 , the rank of

$\left.\begin{array}{llll}\square & 0 & 0 & 1 \square \\ \bigoplus & 1 & 0 & 2 \\ \bigoplus & 0 & 1 & 3\end{array}\right]$ is also 3.
Lemma (11): If the rank of the N by N matrix A is N , then A^{-1} exists.
Proof: If the rank of the N by N matrix is N , then all of the columns of A are linearly independent. Hence, when implementing the Gaussian triangularization of A, all of the diagonal elements $u_{i i}$ of the upper triangular matrix U must be nonzero. Hence the determinant of $\mathrm{U}\left(=\square_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{u}_{\mathrm{ii}}\right)$ is also nonzero. Recall that

$$
\begin{equation*}
\mathrm{EA}=\mathrm{U} \quad \text { where } \quad|\mathrm{E}|=1 \tag{39}
\end{equation*}
$$

Hence, taking determinants on both sides of (39):

$$
\begin{equation*}
|\mathrm{EA}|=|\mathrm{E}||\mathrm{A}|=|\mathrm{A}|=|\mathrm{U}|=\square_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{u}_{\mathrm{ii}} \neq 0, \tag{40}
\end{equation*}
$$

and we conclude that $|A| \neq 0$ so A^{-1} exists.
Q.E.D.

Problem 14: Let A by M by N where $M>N$ and consider the system of equations
(i) $\quad \mathrm{Ax}=\mathrm{b}$
where x is an N dimensional solution vector and b is an M dimensional vector of parameters. Suppose the N columns of $A \equiv\left[A_{\bullet 1}, A_{\bullet 2}, \ldots, A_{\bullet}\right]$ are linearly independent. Under what conditions on b will a solution x to (i) exist and how could you compute it if it did exist? Hint: Make use of the M by M elementary row matrix E which reduces A to upper triangular form U; i.e., E and U satisfy (28) and (29) in the text above.

8. Comparative Statics Analysis of a System of Linear Equations

Let A be an N by N matrix and b an N dimensional vector. If $|A| \neq 0$, then the solution x to $A x=b$ can be written as:

$$
\begin{equation*}
\mathrm{x}=\mathrm{A}^{-1} \mathrm{~b} \tag{41}
\end{equation*}
$$

Obviously, the components of the solution vector x depend on the components $a_{i j}$ of A and b_{i} of $b \equiv\left[b_{1}, b_{2}, \ldots, b_{N}\right]^{T}$. How does x change as the $a_{i j}$ and b_{i} change?

Using (41), the N by N matrix of the derivatives of x_{i} with respect to $b_{j}, \partial x_{i} / \partial b_{j}$, can be written as

$$
\begin{equation*}
\square_{b x}=\left[\partial x_{i} / \partial b_{j}\right]=A^{-1} \tag{42}
\end{equation*}
$$

Recalling the determinantal formula for A^{-1} given in Lemma (11), we see that

$$
\begin{equation*}
\partial x_{i} / \partial b_{j}=A_{j i} /|A| ; 1 \leq i, j \leq N \tag{43}
\end{equation*}
$$

where $A_{j i}$ is the $j i t h$ cofactor of A.
In order to determine how the components of x change as the components of A change, it is convenient to study a somewhat more general problem: we let each component of the A matrix be a function of the scalar variable t (i.e., $a_{i j}=a_{i j}(t)$ for $1 \leq i, j \leq N)$ and then x defined by (41) will also be a function of $t, x(t)$. We then compute the vector of derivatives, $x\left[(t) \equiv[x \llbracket(t), \ldots, x \sharp(t)]^{T}\right.$. Before we do this, we establish a preliminary result.

Lemma (12): Let $A(t) \equiv\left[a_{i j}(t)\right]$ have N columns and $B(t) \equiv\left[b_{i j}(t)\right]$ have N rows so that $C(t) \equiv A(t) B(t)$ is well defined. Note that each element of $A(t)$ and each
element of $B(t)$ is a function of the scalar variable t. Then the matrix of derivatives with respect to t of the product matrix is

$$
\begin{equation*}
\mathrm{C}[(\mathrm{t})=\mathrm{A}(\mathrm{t}) \mathrm{B} \square \mathrm{t})+\mathrm{A} \square \mathrm{t}) \mathrm{B}(\mathrm{t}) \tag{44}
\end{equation*}
$$

where $A \square t) \equiv\left[a_{i j}(t)\right]$ and $\left.B \square t\right) \equiv\left[b_{j}(t)\right]$ are the matrices of derivatives of $A(t)$ and $B(t)$.

Proof: The ijth element of C is

$$
\begin{equation*}
\mathrm{c}_{\mathrm{ij}}(\mathrm{t})=\mathrm{A}_{\mathrm{i}} \bullet(\mathrm{t}) \mathrm{B}_{\bullet j}(\mathrm{t})=\square_{\mathrm{n}=1}^{\mathrm{N}} \mathrm{a}_{\mathrm{in}}(\mathrm{t}) \mathrm{b}_{\mathrm{nj}}(\mathrm{t}) . \tag{45}
\end{equation*}
$$

Differentiating (45) with respect to t yields for all i and j :

$$
\begin{equation*}
c_{i j}(t)=\square_{n=1}^{N} a_{i n}(t) b \square_{j j}(t)+\square_{n=1}^{N} a \prod_{i n}(t) b_{n j}(t) . \tag{46}
\end{equation*}
$$

It can be seen that equations (46) are equivalent to equations (44).
Q.E.D.

Now let the $B(t)$ matrix which appears in Lemma (12) be $A^{-1}(t)$ and differentiate both sides of the following identity with respect to t :

$$
\begin{equation*}
\mathrm{A}(\mathrm{t}) \mathrm{A}^{-1}(\mathrm{t})=\mathrm{I}_{\mathrm{N}} . \tag{47}
\end{equation*}
$$

Using Lemma (12), we obtain:

$$
\begin{equation*}
A \square t) A^{\square 1}(t)+A(t)\left[d^{\square 1}(t) / d t\right]=0_{N \square N} \tag{48}
\end{equation*}
$$

where $d A^{\square 1}(t) / d t \equiv\left[d a_{i j}^{\square}(t) / d t\right]$ is the N by N matrix of derivatives of the components of A^{-1} with respect to t. Premultiply both sides of (48) by $A^{-1}(t)$ and after rearranging terms, we obtain the following formula:

$$
\begin{equation*}
\mathrm{dA}^{-1}(\mathrm{t}) / \mathrm{dt}=-\mathrm{A}^{-1}(\mathrm{t}) \mathrm{A}\left[(\mathrm{t}) \mathrm{A}^{-1}(\mathrm{t})\right. \tag{49}
\end{equation*}
$$

Now return to (41) which we rewrite as:
(50) $\quad \mathrm{x}(\mathrm{t})=\mathrm{A}^{-1}(\mathrm{t}) \mathrm{b}$.

Differentiating (50) with respect to t and using (49) yields:

$$
\begin{equation*}
x \square t) \equiv[x \boxminus(t), \ldots, x \notin(t)]^{T}=\square A^{\square 1}(t) A \square(t) A^{\square 1}(t) b . \tag{51}
\end{equation*}
$$

If only $a_{i j}$ depends on t, then

$$
\begin{equation*}
\mathrm{A} \square \mathrm{t})=\mathrm{e}_{\mathrm{i}} \mathrm{e}_{\mathrm{j}}^{\mathrm{T}} \mathrm{a}_{\mathrm{j}}(\mathrm{t}) \tag{52}
\end{equation*}
$$

where e_{i} and e_{j} are the i and j th unit vectors. Substituting (52) into (51) yields in this special case:

$$
\begin{equation*}
x \square t)=\square A^{\square 1}(t) e_{i} a_{i j}(t) e_{j}^{T} A^{\square 1}(t) b . \tag{53}
\end{equation*}
$$

Problem 15: Suppose the N components of the b vector are all functions of the scalar variable t; i.e., we have $b(t) \equiv\left[b_{1}(t), \ldots, b_{N}(t)\right]^{T}$. Define
(i) $\quad \mathrm{x}(\mathrm{t})=\mathrm{A}^{-1} \mathrm{~b}(\mathrm{t})$
where the N by N matrix A does not depend on t and $|\mathrm{A}| \neq 0$. Exhibit a formula for the vector of derivatives $x \square \mathrm{t})$. Hint: This problem is easy!

Problem 16: Let A be an N by N matrix. Regard $|A|$ as a function of the ijth element of A, $a_{i j}$; i.e., define the function $f\left(a_{i j}\right)=|A|$. Find a formula for the derivatives of the determinant of A with respect to a_{ij}; i.e., calculate $\left.\mathrm{f} \llbracket \mathrm{a}_{\mathrm{ij}}\right)$. Hint: use Lemma (10).

