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7. Linear Independence and the Rank of a Matrix

The results in this section provide another condition which is necessary and
sufficient for the existence of the inverse for a square matrix.

Let   A ≡ [A•1 ,A•2 , . . ., A•N ]  be an M by N matrix.  We say that the N column
vectors of A are linearly independent if the only solution  x to

(22) Ax = 0M

is x = 0N.  If a solution vector x ≠ 0N to (22) exists, then we say that the columns
of A are linearly dependent.

How can we determine whether the columns of A are linearly dependent or
independent?  The Gaussian triangularization algorithm developed in section 3
above can be used to answer this question.

Consider Stage 1 of the Guassian algorithm.  If we end up in case (iii) (so that   A1•

= 0M), then we can satisfy (22) by choosing x = e1 (where   e1 ≡ (1,0M -1
T )T  is the

first  unit vector of dimension M).  In this case where   A1• = 0  M , we can
immediately deduce that the columns of A are linearly dependent.

Now assume that cases (i) or (ii) occurred in Stage 1 of the algorithm and we
move on to Stage 2 (assuming N and M are greater than one) of the algorithm.  If
case (iii) occurs in Stage 2, then at the end of Stage 2, the first two columns of the
transformed A matrix have the following form:

(23)
  

u11, u12
0M-1, 0M-1

È 
Î 

˘ 
˚ 

where u11 ≠ 0.  Consider  solving the following equation:

(24) u11 x1 + u12 x2 = 0.

If we set x2 = 1, then since u11 ≠ 0, we can solve (24) for x1 as follows:

(25) x1 = -u12/u11.

Let the M by M matrix E denote the product of the elementary row operation
matrices that transform the first two columns of A into the case (iii) upper
triangular matrix defined by (23).  Now premultiply both sides of (22) by E to
obtain:

(26) EA x = E0M = 0M.

It can be seen, using (23) - (25), that if we choose x to be the following vector:
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(27) x* ≡ -(u12/u11)e1 + e2 ≠ 0N,

then x* satisfies (26).  Recall from the previous section that each elementary row
matrix that adds a multiple of one row to another row has a determinant equal to
one.  Since E is a product of these matrices, its determinant will also equal one.
Hence E-1 exists and we can premultiply both sides of EAx* = 0M by E-1 and
conclude that Ax* = 0M with x* ≠ 0N.  Thus if case (iii) occurs at the end of Stage 2
of the Gaussian triangularization algorithm, we can conclude that the columns of
A are linearly dependent.

We now need to consider two cases dependent on whether the number of rows
of A (M) is greater or less than the number of columns of A(N).

Case (1):  M ≥"N.

In this case, we follow the Gaussian algorithm through all N stages.  If at the end
of any stage (say stage i) of the algorithm, we find that uii = 0, we can adapt the
above stage 2 argument to show that there is a nonzero x* vector (which has   xi

*  =
1 and   xj

*  = 0 for j > i) such that Ax* = 0 M and hence the columns of A are linearly
dependent.

On the other hand, if all of the diagonal elements of the final upper triangular
matrix are nonzero, then we can show that the columns of A are linearly
independent.  In this case, the final U matrix has the following form:

(28) U =  È u11    u12    .  .   .                u1 N ˘ ,                           ’i=1 
N uii  ≠  0.

                  Í 0       u22    .  .   .                u2 N  Í
                  Í .                                                Í
                  Í .                                                Í
                  Í 0       0     .   .   .                uN N  Í
                  Î 0M-N  0 M-N .  .   .                0M-N˚

Let E represent the product of the elementary row matrices that transform A into
the U defined by (28); i.e., we have

(29) EA = U ; |E| = 1.

Premultiply both sides of (22), Ax = 0M, by E to obtain:

(30) EAx = Ux = E0M = 0M.

Using (28), we see that the Nth equation in (31) is:

(31) uNN xN = 0
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and since uNN ≠"0 by hypothesis, we must have xN = 0.  Now look at the N-1 st
equation in (30):

(32) uN-1,N-1 xN-1  + uN-1,N x = 0.

Substituting xN = 0 into (32) yields

(33) uN-1,N-1 xN-1  = 0

and since uN-1,N-1 ≠ 0 by hypothesis, we must have xN-1 = 0.  Continuing on in
the same way, we deduce that the only x solution to (30) is x* = 0N.

It is obvious that x* = 0N satisfies Ax = 0M.  Could there be any other solution to
Ax = 0M?  Let x** be such that

(34) Ax** = 0M.

Premultiplying both sides of (34) by E leads to:

(35) EAx** = Ux** = 0M.

But the only solution to (35) is x** = 0N.  Hence under our Case (1) hypothesis
where M ≥ N and all uii ≠ 0, i = 1, 2, . . ., N, we deduce that the columns of A are
linearly independent.  If any of the uii = 0, then the columns of A are linearly
dependent.

Case 2:  M < N.

In this case, carry out the Gaussian triangularization procedure until we run out
of rows.  The final U matrix will  have the following form:

(36)

  

U =

u11 u12 . . . u1M u1M+1 . . . u1N
0 u22 . . . u2M+1 . . . u2N
:. u2M
0 0 . . . uMM uMM+1 . . . uMN

È 

Î 

Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 

.

If any of the uii = 0, then we can adapt our previous arguments to show that the
columns of A are linearly dependent.  For example, suppose u22 is the first zero
uii.  Then the x* ≠ 0N defined by (27) will satisfy Ax* = 0M.

If uii ≠"0 for i = 1, 2, . . ., M, then consider the equations Ux = 0M.  If we set   xM+1
*

= -1 and   xM+2
*  =   xM+3

*  = . . . =   xN
*  = 0, then the equations Ux = 0N reduce to
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(37)

  

u11 u12 . . . u1M
0 u22 . . . u2M
:.
0 0 uMM

È 

Î 

Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙   

x1
x2
:.

xM

È 

Î 

Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 

 

  

=

u1M+1
u2 M+1

:.
uM M+1

È 

Î 

Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 

which can readily be solved for    x1
*, . . .,xM

* ;  i.e.,

(38)   xM
* = uMM+1 /uMM;

           xM-1
* = [uM-1,M+1 - uM-1,MxM

* ]/u M-1,M-1; etc.

The resulting x* ≠ 0N and hence we deduce that the columns of A are linearly
dependent.

Thus if we are in Case (2), we inevitably deduce that the columns of A are
linearly dependent.

Putting all of the above material together, we find that the columns of A are
linearly dependent unless M ≥ N and the N uii elements in (28) are all nonzero.
Only in this last case, are the columns of A linearly independent.

Definition:  The rank of an N by M matrix is the maximal number of linearly
independent columns which it contains.

Example the rank of 
  

1 0 0
0 1 0
0 0 1

È 

Î 
Í 

˘ 

˚ 
˙  is 3, the rank of

  

1 0 0 1
0 1 0 2
0 0 1 3

È 

Î 
Í 

˘ 

˚ 
˙  is also 3.

Lemma (11):  If the rank of the N by N matrix A is N, then A-1 exists.

Proof:  If the rank of the N by N matrix is N, then all of the columns of A are
linearly independent.  Hence, when implementing the Gaussian triangularization
of A, all of the diagonal elements uii of the upper triangular matrix U must be
nonzero.  Hence the determinant of   U(= Pi=1

N uii )  is also nonzero.  Recall that

(39) EA = U where |E| = 1.

Hence, taking determinants on both sides of (39):

(40) |EA|=|E| |A| = |A| = |U| =   Pi=1
N  uii ≠ 0,
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and we conclude that |A| ≠ 0 so A-1 exists.
Q.E.D.

Problem 14:  Let A by M by N where M > N and consider the system of
equations

(i) Ax = b

where x is an N dimensional solution vector and b is an M dimensional vector of
parameters.  Suppose the N columns of   A ≡ [A•1 ,A•2 , . . ., A•N ]  are linearly
independent.  Under what conditions on b will a solution x to (i) exist and how
could you compute it if it did exist?  Hint:  Make use of the M by M elementary
row matrix E which reduces A to upper triangular form U; i.e., E and U satisfy
(28) and (29) in the text above.

8. Comparative Statics Analysis of a System of Linear Equations

Let A be an N by N matrix and b an N dimensional vector.  If |A| ≠ 0, then the
solution x to Ax = b can be written as:

(41) x = A-1 b.

Obviously, the components of the solution vector x depend on the components
aij of A and bi of b ≡ [b1, b2, . . ., bN]T.  How does x change as the aij and bi
change?

Using (41), the N by N matrix of the derivatives of xi with respect to bj, ∂xi/∂bj,
can be written as

(42) —bx = [∂xi/∂bj] = A-1.

Recalling the determinantal formula for A-1 given in Lemma (11), we see that

(43) ∂xi/∂bj = Aji/|A|  ;   1 ≤"i, j ≤ N

where Aji is the jith cofactor of A.

In order to determine how the components of x change as the components of A
change, it is convenient to study a somewhat more general problem:  we let each
component of the A matrix be a function of the scalar variable t (i.e., aij = aij(t) for
1 ≤ i, j ≤ N) and then x defined by (41) will also be a function of t, x(t).  We then
compute the vector of derivatives,   ¢ x (t) ≡ [  ¢ x 1(t), . . .,   ¢ x N (t)]T.  Before we do this,
we establish a preliminary result.

Lemma (12):  Let A(t) ≡ [aij(t)] have N columns and B(t) ≡ [bij(t)] have N rows so
that C(t) ≡ A(t)B(t) is well defined.  Note that each element of A(t) and each
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element of B(t) is a function of the scalar variable t.  Then the matrix of
derivatives with respect to t of the product matrix is

(44)   ¢ C (t) = A(t) ¢ B (t) + ¢ A (t)B(t)

where   ¢ A (t) ≡ [ ¢ a ij(t)]  and   ¢ B (t) ≡ [ ¢ b ij(t)]  are the matrices of derivatives of A(t) and
B(t).

Proof:  The ijth element of C is

(45)   cij(t) = Ai•(t)B•j (t) = Sn=1
N ain(t)bnj(t).

Differentiating (45) with respect to t yields for all i and j:

(46)   ¢ c ij(t) = Sn=1
N ain(t) ¢ b nj(t) + Sn=1

N ¢ a in(t)bnj(t).

It can be seen that equations (46) are equivalent to equations (44).
Q.E.D.

Now let the B(t) matrix which appears in Lemma (12) be A-1(t) and differentiate
both sides of the following identity with respect to t:

(47) A(t)A-1(t) = IN.

Using Lemma (12), we obtain:

(48)   ¢ A (t)A-1(t) + A(t)[dA-1(t)/dt] = 0N¥N

where   dA-1(t)/dt ≡ [daij
-1(t)/dt]  is the N by N matrix of derivatives of the

components of A-1 with respect to t.  Premultiply both sides of (48) by A-1 (t) and
after rearranging terms, we obtain the following formula:

(49) dA-1(t)/dt = -A-1(t)  ¢ A (t)A-1(t).

Now return to (41) which we rewrite as:

(50) x(t) = A-1(t)b.

Differentiating (50) with respect to t and using (49) yields:

(51)   ¢ x (t) ≡ [ ¢ x t(t), . . ., ¢ x N(t)]T = -A-1(t) ¢ A (t)A-1(t)b.

If only aij depends on t, then



33

33

(52)   ¢ A (t) = eie j
T ¢ a ij(t)

where ei and ej are the i and jth unit vectors.  Substituting (52) into (51) yields in
this special case:

(53)   ¢ x (t) = -A-1(t)ei ¢ a ij(t)e j
TA-1(t)b.

Problem 15:  Suppose the N components of the b vector are all functions of the
scalar variable t; i.e., we have b(t) ≡ [b1(t), . . ., bN(t)]T.  Define

(i) x(t) = A-1 b(t)

where the N by N matrix A does not depend on t and |A|≠ 0.  Exhibit a formula
for the vector of derivatives   ¢ x (t) .  Hint:  This problem is easy!

Problem 16:  Let A be an N by N matrix.  Regard |A| as a function of the ijth
element of A, aij; i.e., define the function f(aij) = |A|.  Find a formula for the
derivatives of the determinant of A with respect to aij; i.e., calculate   ¢ f (aij).   Hint:
use Lemma (10).


