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7. Linear Independence and the Rank of a Matrix

The results in this section provide another condition which is necessary and
sufficient for the existence of the inverse for a square matrix.

Let A =[A.1, A, ..., Ay be an M by N matrix. We say that the N column
vectors of A are linearly independent if the only solution x to

(22) Ax=0Mm

is x = ON. If a solution vector x = ON to (22) exists, then we say that the columns
of A are linearly dependent.

How can we determine whether the columns of A are linearly dependent or

independent? The Gaussian triangularization algorithm developed in section 3
above can be used to answer this question.

Consider Stage 1 of the Guassian algorithm. If we end up in case (iii) (so that A1,

= Om), then we can satisfy (22) by choosing x = e1 (where e = (1,0§/I_1)T is the
first unit vector of dimension M). In this case where A.=0 », we can
immediately deduce that the columns of A are linearly dependent.

Now assume that cases (i) or (ii) occurred in Stage 1 of the algorithm and we
move on to Stage 2 (assuming N and M are greater than one) of the algorithm. If

case (iii) occurs in Stage 2, then at the end of Stage 2, the first two columns of the
transformed A matrix have the following form:

[ U1, up |
(23) [OM-1, Om-1]

where uj1 = 0. Consider solving the following equation:

(24) u11x1 +upex=0.

If we set xo = 1, then since uj] # 0, we can solve (24) for x as follows:
(25)  x1=-u12/u11.

Let the M by M matrix E denote the product of the elementary row operation
matrices that transform the first two columns of A into the case (iii) upper
triangular matrix defined by (23). Now premultiply both sides of (22) by E to
obtain:

(26) EAx=EO0M=0M.

It can be seen, using (23) - (25), that if we choose x to be the following vector:
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(27)  x*=-(ur2/ur)er + ex = 0N,

then x* satisfies (26). Recall from the previous section that each elementary row
matrix that adds a multiple of one row to another row has a determinant equal to
one. Since E is a product of these matrices, its determinant will also equal one.

Hence E-1 exists and we can premultiply both sides of EAx* = Op by E-1 and
conclude that Ax* = Oy with x* = ON. Thus if case (iii) occurs at the end of Stage 2

of the Gaussian triangularization algorithm, we can conclude that the columns of
A are linearly dependent.

We now need to consider two cases dependent on whether the number of rows
of A (M) is greater or less than the number of columns of A(N).

Case (1): M =IN.

In this case, we follow the Gaussian algorithm through all N stages. If at the end
of any stage (say stage i) of the algorithm, we find that u;; = 0, we can adapt the

above stage 2 argument to show that there is a nonzero x* vector (which has x; =

1 and x; =0 for j > i) such that Ax* = 0 and hence the columns of A are linearly
dependent.

On the other hand, if all of the diagonal elements of the final upper triangular
matrix are nonzero, then we can show that the columns of A are linearly
independent. In this case, the final U matrix has the following form:

(28) U= (un Up .. . U N ] ’ Hi:lN u; = 0.
0 uy ... U,y |
: |
o o0 ... Uy |
| Opvn O i - - O]

Let E represent the product of the elementary row matrices that transform A into
the U defined by (28); i.e., we have

(29) EA=U ; IEI=1.

Premultiply both sides of (22), Ax = Oy, by E to obtain:
(30) EAx=Ux=EO0\=0M.

Using (28), we see that the Nth equation in (31) is:

(31) unnxn=0
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and since unN #/0 by hypothesis, we must have xN = 0. Now look at the N-1 st
equation in (30):

(32)  uN-1,N-1XN-1 +un-1,N x=0.
Substituting xn = 0 into (32) yields
(33)  uN-1N-1XN-1 =0

and since un-1N-1 # 0 by hypothesis, we must have xN.1 = 0. Continuing on in
the same way, we deduce that the only x solution to (30) is x* = ON.

It is obvious that x* = ON satisfies Ax = Op1. Could there be any other solution to
Ax =0pM? Let x** be such that

(34) AX*™ =0M.
Premultiplying both sides of (34) by E leads to:
(35) EAX™ =Ux** =0M.

But the only solution to (35) is x** = ON. Hence under our Case (1) hypothesis
where M>Nand all u;;#0,i=1, 2, . .., N, we deduce that the columns of A are
linearly independent. If any of the uj; = 0, then the columns of A are linearly
dependent.

Case 2: M < N.

In this case, carry out the Gaussian triangularization procedure until we run out
of rows. The final U matrix will have the following form:

[U11 Uz ... WM UM+l - UIN ]
(36) U< | O Upy ... WM+1 ..o UWoN |
UsM
O 0 .. uMM uMM+1 e uMN

If any of the uj; = 0, then we can adapt our previous arguments to show that the
columns of A are linearly dependent. For example, suppose up2 is the first zero
uji. Then the x* = On defined by (27) will satisfy Ax* = Om.

If ujj #00 fori=1,2, ..., M, then consider the equations Ux = Onpp. If we set xpg41
=-1and XI\/I_‘_z = x;/1+3 =...= XI*\I =0, then the equations Ux = ON reduce to
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|'U.11 Upp ... UM -| |—X1 ] I- UiM+1 -:

| 0 Upyy ... UomMm | |X2 | _ Uos M+1
G7 j : J B
0 0 unv | v [uneva |

which can readily be solved for x;, .. -/XI*\/I ; ie.,
(38)  xm =umm+1/umms

XM-1 = [UM-1,M+1 — Unm-1 MXM ]/ UM-1 M-1 etc.

The resulting x* = ON and hence we deduce that the columns of A are linearly
dependent.

Thus if we are in Case (2), we inevitably deduce that the columns of A are
linearly dependent.

Putting all of the above material together, we find that the columns of A are
linearly dependent unless M = N and the N uj; elements in (28) are all nonzero.
Only in this last case, are the columns of A linearly independent.

Definition: The rank of an N by M matrix is the maximal number of linearly
independent columns which it contains.

1 00

Example the rank of [O 1 0] is 3, the rank of
0 0 1

o 0 1]

0 1 0 2,isalso3.

001 3

Lemma (11): If the rank of the N by N matrix A is N, then A-1 exists.
Proof: 1If the rank of the N by N matrix is N, then all of the columns of A are

linearly independent. Hence, when implementing the Gaussian triangularization
of A, all of the diagonal elements uj; of the upper triangular matrix U must be

nonzero. Hence the determinant of U(= Hiljluii) is also nonzero. Recall that

(39) EA=U where lEl =1.

Hence, taking determinants on both sides of (39):

40) IEAI=IEl 1Al = 1Al = |Ul =1} uji =0,
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and we conclude that | Al = 0so A-lexists.
QE.D.

Problem 14: Let A by M by N where M > N and consider the system of
equations

(1) Ax=Db

where x is an N dimensional solution vector and b is an M dimensional vector of
parameters. Suppose the N columns of A =[A.q,A.;, ..., A.n] are linearly
independent. Under what conditions on b will a solution x to (i) exist and how
could you compute it if it did exist? Hint: Make use of the M by M elementary
row matrix E which reduces A to upper triangular form U; i.e., E and U satisfy
(28) and (29) in the text above.

8. Comparative Statics Analysis of a System of Linear Equations

Let A be an N by N matrix and b an N dimensional vector. If | Al =0, then the
solution x to Ax = b can be written as:

(41) x=A-1b.

Obviously, the components of the solution vector x depend on the components
ajj of A and bj of b = [by, by, . . ., bn]T. How does x change as the ajj and bj
change?

Using (41), the N by N matrix of the derivatives of x; with respect to b;, 0x;/ ob;,
can be written as

(42)  Vpx = [0xi/0bj] = A-L.

Recalling the determinantal formula for A"l given in Lemma (11), we see that
(43) oxi/dbj=Aj/ Al ; 1<ij<N

where Aj; is the jith cofactor of A.

In order to determine how the components of x change as the components of A
change, it is convenient to study a somewhat more general problem: we let each
component of the A matrix be a function of the scalar variable t (i.e., ajj = ajj(t) for
1 <1i,j<N) and then x defined by (41) will also be a function of t, x(t). We then
compute the vector of derivatives, x' (t) = [x|(t), . .., x}y (t)]T. Before we do this,
we establish a preliminary result.

Lemma (12): Let A(t) = [aij(t)] have N columns and B(t) = [bij(t)] have N rows so
that C(t) = A(t)B(t) is well defined. Note that each element of A(t) and each
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element of B(t) is a function of the scalar variable t. Then the matrix of
derivatives with respect to t of the product matrix is

(44) C'(t)=AW{)B'(t)+A'(t)B(t)

where A'(t) = [a’ij (t)] and B'(t) = [b{j(t)] are the matrices of derivatives of A(t) and
B(t).

Proof: The ijth element of C is

(45)  c(t) = Aju(DB.j (1) = E0L ajn (Dbpy(1).

Differentiating (45) with respect to t yields for all i and j:
! N ! N !

(46) Cij (t)= 2n=1 jn (t)bn](t) +2Zn-1 ain(t)bnj (t).

It can be seen that equations (46) are equivalent to equations (44).
Q.ED.

Now let the B(t) matrix which appears in Lemma (12) be A-1(t) and differentiate
both sides of the following identity with respect to t:

(47) A@{)A-L(t) =1N.
Using Lemma (12), we obtain:

48)  A'(MDAT(®)+AWM[AAT() /dt] = Onxn

where dA_l(t) /dt= [dai_]- 1(t) / dt] is the N by N matrix of derivatives of the

components of A-l with respect to t. Premultiply both sides of (48) by A1 (t) and
after rearranging terms, we obtain the following formula:

(49) dAL(t)/dt=-AL)A' (HAL(®Y).

Now return to (41) which we rewrite as:

(50)  x(t) = Al(t)b.

Differentiating (50) with respect to t and using (49) yields:
G x'(t) =[x}t), ... xn®O1T =—A T A A (B,

If only ajj depends on t, then
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(52)  A'(t)= eiefaji(V

where e;j and ej are the i and jth unit vectors. Substituting (52) into (51) yields in
this special case:

(53)  x'(t) = -A” (Dejafj(te] A ()b,

Problem 15: Suppose the N components of the b vector are all functions of the
scalar variable t; i.e., we have b(t) = [by(t), . . ., bn(t)]T. Define

(i) x(t) = A1b(t)

where the N by N matrix A does not depend on t and | A I 0. Exhibit a formula
for the vector of derivatives x'(t). Hint: This problem is easy!

Problem 16: Let A be an N by N matrix. Regard | Al as a function of the ijth
element of A, ajj; i.e., define the function f(aij) = |Al. Find a formula for the
derivatives of the determinant of A with respect to ajj; i.e., calculate f ’(aij). Hint:

use Lemma (10).
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