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CHAPTER 3:  UNCONSTRAINED OPTIMIZATION

W. Erwin Diewert                                                                  May 2003

1. First and Second Order Conditions for A Local Min or Max.

Consider the problem of maximizing or minimizing a function of N variables,
f(x1, . . ., xN) = f(x).  From Chapter 1, we found that the first order necessary
conditions for x0 to be a local minimizer or maximizer for f were:

(1) Dvf(x0) = 0 for all directions v ≠ 0N

where the first order directional derivative of f in the direction v evaluated at the
point x is defined as

(2) Dvf(x) ≡ lim tÆ0 [f(x + tv ) - f(x)] / t.

In the case where the first order partial derivatives of f exist and are continuous
around x0, we found that conditions (1) were equivalent to the following N first
order necessary conditions for x0 to be a local minimizer or maximizer for f:

(3) f1(x0) = 0 ;  f2(x0) = 0 ;  . . . ;  fN(x0) = 0

where the ith first order partial derivative of f is defined as

(4) fi(x) ≡ limtÆ0[f(x + tei) - f(x)]/t; i = 1, . . ., N

where ei is the ith unit vector.

It is convenient to introduce a symbol to denote the vector of first order partial
derivatives of f evaluated at the point x:

(5) —f(x) ≡ [f1(x), f2(x), . . ., fN(x)]T.

Note that we have defined —f(x) (called the gradient vector of f evaluated at x) to
be column vector.

Using the notation (5), the system of first order conditions (3) can be written
more efficiently as:

(6) —f(x0) = 0N.

Also using (5), it can be seen that our old First Order Directional Derivative
Theorem can be written as:
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(7) Dvf(x0) =   S i=1
N vifi(x0) = vT—f(x0).

Recall that we required the first order partial derivative functions fi(x) to exist
and be continuous around x0, in order to derive the formula (7).

It is also convenient to introduce a notation for the N by N matrix of second
order partial derivatives of f evaluated at the point x:

(8)
  
—2f(x) ≡

f11(x), . . ., f1N (x)
:. :.

fN1(x), . . ., fNN(x)

È 

Î 

Í 
Í 

˘ 

˚ 

˙ 
˙ 

where the ijth element in —2f(x) is defined as

(9) fij(x) ≡ limtÆ0[fi(x + tej) - fi(x)]/t,

where fi(x) is the ith first order partial derivative of f evaluated at the point x.
The N by N matrix —2f(x) is called the Hessian matrix of f evaluated at x.

Recall that the directional derivative of the function Dvf(x) evaluated at x in the
direction u ≠ 0N is defined as:

(10) Dvuf(x) ≡ limtÆ0[Dvf(x + tu) - Dvf(x)]/t.

Using (8), it can be seen that our old Second Order Directional Derivative
Theorem can be written as follows:

(11) Dvuf(x) = vT—2f(x)u.

Recall that in order to prove (11), we required the existence and continuity of the
second order partial derivative functions fij(x) around the point x.

Armed with formula (11), we can state second order sufficient conditions for x0 to be
a strict local minimizer of f:  in addition to the first order conditions (6), we require
the following second order conditions:

(12) Dvvf(x0) = vT—2f(x0) v >  0 for all v ≠ 0N.

If it is convenient, we can replace v ≠ 0N in (12) by vTv = 1 in order to obtain an
equivalent set of conditions.

Since conditions (6) are equivalent to conditions (1), it can be seen that conditions
(6) and (12) are analogues to our single variable calculus conditions for a strict
local minimum, except that these univariate conditions now have to hold for all
possible directions v.
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The counterpart to the univariate second order necessary conditions for x0 to be a
local minimizer for f are conditions (6) plus the following second order conditions:

(13) Dvvf(x0) = vT—2f(x0) v ≥ 0 for all v ≠ 0N.

Obviously, there are analogous sufficient conditions for x0 to be a strict local
maximizer for f:  in addition to (6), we require

(14) Dvvf(x0) = vT—2f(x0) v < 0 for all v ≠ 0N.

Finally, the analogous necessary conditions for x0 to be a local maximizer for f are (6)
and the following second order conditions:

(15) Dvvf(x0) = vT—2f(x0) v ≤ 0 for all v ≠ 0N.

Notice that if N ≥ 2, then the second order conditions (12) - (15) involve checking
an infinite number of inequalities.  In Chapter 1, we have shown how this task
can be accomplished in the case where N = 2.  In section 4 below, we will show
how to do this checking of inequalities for a general N.  However, before we do
this, it is useful to develop a few properties of quadratic functions.

2. Taylor's Theorem and Quadratic Approximations

Taylor's Theorem:  Let f(x) be a function of one variable defined over the interval
x0 ≤ x ≤ x1 where x0 < x1.  Suppose the n-1 derivative of f, f(n-1)(x), exists and is
continuous over this interval and suppose that the nth derivative of f, f (n)(x),
exists for x such that x0 < x < x1.  Define the "remainder" R by the following
equation:

(16) f(x1) = f(x0) +    Sk =1
n-1 (x1-x0)k

k!  f(k)(x0) + R.

Then there exists a point x* such that x0 < x* < x1 and

(17) R = (x1 - x0)n f (n)(x*) / n!.

Proof:  Define the number M by the following equation:

(18) f(x1) = f(x0) +   Sk =1
n-1 (x1-x0)k

k!  f(k)(x0) + M  
(x1-x 0)n

n! .

Define the function F(x) by:

(19)  F(x) ≡ -f(x1) + f(x) + Âk=1
n-1 [(x - x0) k/k!] f(k)(x) + M(x - x0) n/n! .
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It can be seen that F(x1) = 0 and by using (18), it can be seen that F(x0) = 0 as well.
Thus the function F(x) is continuous for x such that x0 ≤ x ≤ x1 and F is such that
F(x0) = F(x1).  Thus the function F must attain a local min or a local max for at
least one x* such that x0 < x* < x1.  The first order necessary conditions for a min
or a max of F(x) must hold at x = x* so we have

0 =   ¢ F (x*)
   =   ¢ f (x*) +   Sk =1

n-1k (x1-x*)k- 1

k! (-1)f(k)(x*) +   Sk =1
n-1 (x1-x*)k

k! f(k+1)(x*)

+   Mn (x1-x*)n -1

n! (-1)

       differentiating the F defined by (19)

      =   ¢ f (x*) -   ¢ f (x*) - (x1 - x*)f(2)(x*) -   
(x1-x *)2

2! f(3)(x*) - . . . -   
(x1-x *)n -2

(n-2)! f(n-1)(x*)2!

  + (x1 - x*)f(2)(x*) +   
(x1-x *)2

(n-2)! f(3)(x*) + . . . +   
(x1-x *)n -1

(n- 1)!  f(n)(x*) -

  
(x1-x *)n -1

(n- 1)! M

(20)   = (x1 - x*)n-1[f(n)(x*) - M]/(n-1)! cancelling terms.

Since x0 < x* < x1 and hence x1 - x* > 0, we see that (20) implies

(21) f(n)(x*) = M.

Now substitute (21) into (18) and we obtain (16) where R is defined by (17).
Q.E.D.

Note that Taylor's Theorem reduces to the Mean Value Theorem if we set n = 1.

Where n = 2, Taylor's Theorem becomes, letting x1 be replaced by x:

(22) f(x) = f(x0) + (x - x0)  ¢ f (x0) + R.

If we drop the remainder term R on the right hand side of (22), what is left is
called the linear approximation to f around the point x0, i.e., define

(23) l(x) ≡ f(x0) + (x - x0)  ¢ f (x0).

Then for x "reasonably" close to x0, l(x) will approximate f(x) "reasonably" well:

(24) f(x) @  f(x0) + (x - x0)  ¢ f (x0).

Note that l(x0) = f(x0) and   ¢ l (x0) =   ¢ f (x0); i.e., the linear approximation to f
around the point x0 has the same level and first derivative as f when evaluated at
x = x0.



5

5

Figure 1:  The Linear Approximation to f at x0

                    f(x)

                                                                                                                    l(x) = linear
approximation
                            f(x0)

                                                                                                                    f(x)

                                                                                    x0                                    x

When n = 3, Taylor's Theorem becomes, letting x1 be replaced by x:

(25) f(x) = f(x0) + (x - x0)  ¢ f (x0) + (1/2)(x - x0)2   ¢ ¢ f (x0) + R.

If we drop the remainder term R on the right hand side of (25), what is left is
called the quadratic approximation to f around the point x0:

(26) q(x) ≡ f(x0) + (x - x0)  ¢ f (x0) + (1/2)(x - x0)2  ¢ ¢ f (x0).

Note that the quadratic approximation to f(x) around the point x0 will have the
same level and first and second derivatives evaluated at x = x0; i.e., we have

(27) q(x0) = f(x0) ;     ¢ q (x0) =   ¢ f (x0) ;      ¢ ¢ q (x0) =   ¢ ¢ f (x0).

The quadratic approximation to f around the point x0 will generally more closely
approximate f around x0 than the corresponding linear approximation.

Figure 2:  The Quadratic Approximation to f at x0
          f(x), q(x)
                                                                                                                  q(x)

                                                                                                                     x0

                                                                                                                   f(x)
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The concepts of linear and quadratic approximations to general nonlinear
functions can be extended to functions of N variables using the univariate
analysis developed above.  Let f(x) = f(x1, x2, . . ., xN) be a function of N variables
with continuous first and second order partial derivatives.  Now use f in order to
define the following function of a single variable t:

(28) g(t) ≡ f(x0 + t(x - x0)) ; 0 ≤ t ≤ 1.

Thus we have:

(29) g(0) = f(x0) and g(1) = f(x).

Now apply the linear approximation idea to g around the point t = 0.  Thus we
have:

g(t) @  g(0) +   ¢ g (0)(t-0)

        = f(x0) +   S i=1
N  f i(x0)(xi - x0)(t-0)

differentiating (28) with respect to t and evaluating the derivatives
at t = 0

(30)        = f(x0) + t —Tf(x0)(x - x0)

rearranging terms.

Letting t = 1 and using (29), (30) becomes:

(31) f(x) @  f(x0) + —Tf(x0)(x - x0)

and the right hand side of (31) can be regarded as the linear approximation to f(x)
around x = x0.

In order to calculate the quadratic approximation to g(t) around t = 0, we need to
calculate the first and second derivatives of g(t).  Differentiating (28) with respect
to t, we obtain:

(32)   ¢ g (t) =   S i=1
N  f i(x0 + t(x - x0))(xi -   xi

0 )

          = —Tf (x0 + t(x - x0))(x - x0);

(33)   ¢ ¢ g (t) = S i=1
N S j=1

N fij(x
0 + t(x - x0 ))(xi - xi

0)(xj - x j
0)

          = (x - x0)T —2f(x0 + t(x - x0))(x - x0).

Thus the quadratic approximation to g around the point t = 0 is:
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(34) g(t) @  g(0) +   ¢ g (0) (t - 0) + (1/2)  ¢ ¢ g (0)(t - 0)2

(35)         = f(x0) + t —Tf(x0)(x - x0) + (1/2)t2(x - x0)T—2f(x0)(x - x0)

where (35) follows from (34)  using (29), (32) and (33).  Now evaluate (35) at t = 1
and using (29), we have:

(36) f(x) @  f(x0) + —Tf(x0)(x - x0) + (1/2)(x - x0)T—2f(x0)(x - x0).

Note that the right hand side of (36) is a quadratic function of x; it is called the
quadratic approximation to f(x) around the point x = x0.  Note that Young's
Theorem ( fij(x0) = fji(x0) ) for all i ≠ j) implies that the N by N matrix  —2f(x0) in
(36) will be symmetric.

Linear and quadratic approximations to general nonlinear functions of N
variables are widespread in economics, science, engineering, statistics and
business.

3. Rules for Differentiating Linear and Quadratic Functions.

Suppose f(x) is a linear function of N variables; i.e.,

(37) f(x) ≡ a +   S i=1
N  bixi = a + bTx

where bT ≡ [b1, b2, . . ., bN].  Partially differentiating the f(x) defined by (37) with
respect to the components of x yields:

(38) fi(x) = ∂f(x)/∂xi = bi; i = 1, 2, . . ., N.

Obviously, equations (38) can be rewritten as:

(39) —f(x) = b if f(x) ≡ a + bTx; Rule 1.

If we further differentiate the fi(x) defined by (38) with respect to the components
of x, we obtain:

(40) fij(x) ≡ ∂2f(x)/∂xi∂xj = 0; 1 ≤ i, j ≤ N.

The equations (40) can be written more compactly as:

(41) —2f(x) =   0N¥N  if f(x) ≡ a + bTx; Rule 2.

Now suppose f(x) is the following (homogeneous) quadratic function of N
variables; i.e.,
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(42) f(x) ≡  S i=1
N S j=1

N  aij xi xj
       = xT Ax where A = AT.

Note that we are assuming that the matrix of coefficients A ≡ [aij] in (42) is
symmetric; i.e., we have aij = aji for all i ≠ j.  We want to calculate the first and
second order partial derivatives of the f defined by (42).  Let us first consider the
case N = 2.  In this case, taking into account the fact that a12 = a21, we have:

(43) f(x1, x2) = a11   x1
2  + 2a12x1x2 + a22   x2

2 .

The first order partial derivatives of (43) are:

(44) f1(x1, x2) = 2a11x1 + 2a12x2;

f2(x1, x2) = 2a12x1 + 2a22x2.

Equations (44) can be written as:

(45) —f(x) = 2Ax if f(x) ≡ xTAx, A = AT; Rule 3.

If we partially differentiate the fi(x1, x2) in (44) with respect to x1 and x2, we
obtain the following second order derivatives:

(46) f11(x1, x2) = 2a11; f12(x1, x2) = 2a12;
f21 (x1, x2) = 2a12; f22(x1, x2) = 2a22.

Using matrices, equations (46) can be rewritten as:

(47) —2f(x) = 2A if f(x) ≡ xTAx, A = AT; Rule 4.

It can be verified that Rules 3 and 4 hold for a general N and not only the cases N
= 1 and N = 2.

Rules 1 to 4 are extremely useful and should be memorized.

Problems:

1. Verify Rules 3 and 4 for the case N = 3.

2. Consider the following system of equations:

(i)  y = Xx + e

where y and e are M dimensional vectors, X is an M by N matrix and x is an N
dimensional vector.  Define the function f(x) as
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 f(x) ≡ eTe =   S i=1
M ei

2

= (y - Xx)T(y - Xx) using (i) to solve for e
= (yT - xTXT)(y - Xx)
= yTy - yTXx - xTXTy + xTXTXx

(ii) = yTy - 2yTXx + xTXTXx using yTXx = [xTXTy]T.

Assume that (XTX)-1 exists.

(a) Show that   ̂ x  ≡ (XTX)-1 XTy satisfies the system of first order conditions for
minimizing f(x):

(iii) —f(  ̂ x ) = 0N.

[In statistics,   ̂ x  is known as the least squares estimator for the vector of parameters
x].

(b) Show that —2f(x) does not depend on x.

(c) Show that

(iv) vT—2f(  ̂ x ) v > 0 for every v ≠ 0N

and so   ̂ x  is in fact a local minimizer for f(x).  [This part of the problem is
difficult].  This problem shows that the least squares estimator   ̂ x  actually does
minimize the sum of squared errors eTe with respect to the vector of coefficients
x.

4. Quadratic Forms and Definite Matrices

Let A be an N by N symmetric matrix and consider the following definitions:

(48) A is positive definite iff xTAx > 0 for all x ≠%0N;

(49) A is negative definite iff xTAx < 0 for all x ≠ 0N;

(50) A is positive semidefinite iff xTAx ≥ 0 for all x ≠ 0N;

(51) A is negative semidefinite iff xTAx ≤%0 for all x ≠ 0N;

(52) A is indefinite iff it is none of (48) - (51).

Recall the second order conditions (12) - (15) that were discussed in section 1
above.  If we let the A matrix in this section equal —2f(x0) in section 1, it can be
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seen that (48) corresponds to conditions (12) for a strict local minimum, (49)
corresponds to conditions (14) for a strict local maximum, (50) corresponds to the
second order necessary conditions (13) for a local minimum and (51) corresponds
to the second order necessary conditions (15) for a local maximum.

In the following section, we show how the Gaussian triangularization procedure
can be adapted to determine whether a symmetric matrix A has any of the
definiteness properties (48) - (52).

Problem:

3. Let D be an N by N diagonal matrix with main diagonal elements dii for
i = 1, 2, . . ., N.  Determine what restrictions the dii must satisfy in order for D to
be:  (i) positive definite; (ii) negative definite; (iii) positive semidefinite; (iv)
negative semidefinite and (v) indefinite; (assume N ≥ 2 for this case).

5. The Method of Lagrange and Gauss for Diagonalizing a Symmetric
Matrix

Recall the Gaussian triangularization procedure that was discussed in section 3
of Chapter 2 on Elementary Matrix Algebra.  If A is a symmetric N by N matrix,
then this algorithm can readily be modified to transform A into a diagonal
matrix.

Consider Stage 1 of our old algorithm where we added multiples of one row of A
to other rows of A to create zeros below the first component of the first column
of A.  We again apply Stage 1 of our old algorithm, but before we proceed to
Stage 2, we now add multiples of the final Stage 1 first column to the remaining
columns of the transformed A matrix to create zeros in the remainder of row 1.
In other words, we repeat the sequence of elementary row operations that we
used to accomplish Stage 1 of the algorithm but now we apply the same
sequence to the columns as well.

More explicitly, consider the 3 cases for Stage 1 of our old algorithm.  In case (i),
we had a11 ≠ 0, and at the of Stage 1, the transformed A matrix had the following
form (the En represent elementary row operation matrices that add multiples of
the first row of A to the remaining rows of A):

(53)
  

a11, a12 , . . ., a1N
0N-1 , A(2)

È 

Î Í 
˘ 

˚ ˙ =  ENEN-1 . . . E2A.

Now add -a12/a11 times the first column of (53) to the second column of (53); add
-a13/a11 times the first column of (53) to the 3rd column of (53); . . .; add -a1N/a11
times the first column of (53) to the Nth column of (53).  It can be verified that
these elementary column operations can be performed by multiplying (53) on the
right by   E2

TE3
T . . . EN

T ;  i.e., the transposes of the sequence of row operation
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matrices E2, E3, . . ., EN sweep out a12 = a21, a13 = a31, . . ., a1N = aN1.  Thus we
have

(54)
  
ENEN-1 . . . E2AE2

TE3
T . . . EN

T = a11, 0N-1
T

0N-1, A *
È 

Î Í 
˘ 

˚ ˙ 

at the end of our  new Stage 1 Algorithm for case (i) where a11 ≠ 0.

If we take transposes of both sides of (54), we deduce that the matrix on the left
hand side of (54) is symmetric.  Hence A* on the right hand side of (54) must also
be symmetric.  Hence, we can now apply the next stage of our modified
algorithm to the N-1 by N-1 symmetric matrix A*.

Now suppose that at Stage 1 of our old algorithm, case (iii) occurred, i.e., ai1 = 0
for i = 1, 2, . . ., N.  But since A is now assumed to be symmetric, we have a1j = 0
as well for j = 1, 2, . . ., N.  Thus in case (iii), A has the following form:

(55) A = 
  

0, 0N-1
T

0N-1, A *
È 

Î Í 
˘ 

˚ ˙ 

which is the required form for the next stage of our modified algorithm.

Finally, suppose that at Stage 1 of our old algorithm, case (ii) occurred; i.e., a11 =
0 but ai1 ≠ 0 for some i > 1.  Recall that in our old algorithm, we added row i of A
to the first row of A and then applied the case (i) operations to the transformed
matrix.  In the present algorithm, we not only add row i of A to row 1, we then
immediately add column i of the transformed matrix to column 1.  The resulting
matrix will be symmetric with the element 2ai1 + aii in the northwest corner of
the transformed matrix.  We now need to consider 2 cases:

Case (a):   2ai1 + aii ≠%0

In this case, we can now apply our new case (i) algorithm on the previous page
to this transformed matrix.  If we denote E1 as the elementary row matrix that
adds row i of A to row 1, then we have the following decomposition at the end of
Stage 1 of our new algorithm:

(56)
  
ENEN-1 . . . E2E1AE1

TE2
T . . . EN

T = 2ai1 + aii , 0N-1
T

0N-1, A *
È 

Î Í 
˘ 

˚ ˙ ;

i.e., we have again reduced A into block diagonal form where A* is a symmetric
N-1 by N-1 matrix.

Case (b): 2ai1 + aii = 0.
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In this case, if we look at row 1 and row i and column 1 and column i of the
original A matrix, this 2 by 2 submatrix of A has the following form (using a11 =
0 and aii = - 2ai1):

  
0, ai1

ai1, -2ai1
È 
Î 

˘ 
˚ 
.

After adding row i of the original matrix to row 1 and then adding column i of
the original matrix to column 1, the above 2 by 2 submatrix is transformed into:

  
0, -ai1

-a i1, -2ai1
È 
Î 

˘ 
˚ 

so we have not succeeded in getting a nonzero element in the northwest corner
of the transformed matrix.  However, to solve this problem, all we have to do is
add row i of the transformed matrix to row 1 and then add column i of the
transformed matrix to column 1.  Then the new transformed A matrix will be
symmetric and have - 4ai1 ≠ 0 in the top northwest corner.  Hence in this case (b),
we can again obtain a counterpart to (56) where - 4ai1 will replace 2ai1 + aii in the
northwest corner of the matrix on the right hand side of (56).  Hence in both
cases (a) and (b), we have again reduced A into block diagonal form where A* is
an N-1 by N-1 symmetric matrix.

Hence, for all cases, at the end of Stage 1 of our new algorithm, we have reduced
A into the following block diagonal form:

(57)
  

d11, 0N-1
T

0N-1 , A *
È 

Î 
Í 

˘ 

˚ 
˙ 

At Stage 2 of the algorithm, we apply the same type of elementary row and
column operations to the symmetric matrix A* and at the end of Stage 2, we have
reduced A* into the following form:

(58) A* = 
  

d22 , 0N-2
T

0N-2, A * *
È 

Î 
Í 

˘ 

˚ 
˙ 

where A** is an N-2 by N-2 symmetric matrix.

Now further reduce A** into block diagonal form; etc.

Finally, at the end of Stage N, we have transformed A into diagonal form by
means of a sequence of elementary row and column operations where we add
multiples of one row to another row and then repeat the same operation to the
corresponding columns.  If we let the N by N matrix E denote the product of all
of the elementary row matrices, then we have
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(59) EAET = D

where D = [dij] and dij = 0 if i ≠ j.

Example:  Let A 
  
≡

1 2 3
2 1 0
3 0 1

È 

Î 
Í 

˘ 

˚ 
˙ 

Stage 1:  We are in case (i):  a11 = 1 ≠%0.  Hence take -2 times row 1 and add to row
2; take -3 times row 1 and add to row 3.  We obtain the following matrix:

  

1, 2, 3
0, -3, -6
0, -6, -8

È 

Î 
Í 

˘ 

˚ 
˙ .

Now take -2 times column 1 and add to column 2; take -3 times column 1 and
add to column 3; get:

  

1, 0, 0
0, -3, -6
0, -6, -8

È 

Î 
Í 

˘ 

˚ 
˙ .

Stage 2:  Now take -2 times row 2 and add to row 3; get:

  

1,   0, 0
0, -3, -6
0,   0, 4

È 

Î 
Í 

˘ 

˚ 
˙ .

Finally, take -2 times  column 2 and add to column 3; get:

(60) D = 
  

1,   0, 0
0, -3, 0
0,   0, 4

È 

Î 
Í 

˘ 

˚ 
˙ , a diagonal matrix.

The two elementary row matrices that we used at Stage 1 of the algorithm were:

(61)
  
E1 ≡

1, 0, 0
-2, 1 0
0, 0, 1

È 

Î 
Í 

˘ 

˚ 
˙ ; E2 ≡

1, 0, 0
0, 1, 0

-3, 0, 1

È 

Î 
Í 

˘ 

˚ 
˙ .

The final elementary row matrix that we used at Stage 2 of the algorithm was:

(62)
  
E3 =

1, 0, 0
0, 1, 0
0, -2, 1

È 

Î 
Í 

˘ 

˚ 
˙ .


