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Problem:

4. Define E = E3E2E1 where E3 is defined by (62) and E1 and E2 are defined in
(61).  Show that EAET = D where D is defined by (60).

The matrix E and the diagonal matrix D which occurs in the Lagrange-Gauss
diagonalization procedure (see (59) above) can be used to determine whether the
symmetric A satisfies any of the definiteness properties (48) - (52).

Consider the E matrix which occurs in (59).  Since E is a product of elementary
row matrices, each of which has determinant equal to 1, it can be seen that

(63) |E| = |ET| = 1.

Since |ET| = 1, (ET)-1 exists.  Now for each x ≠ 0N, consider the y defined by

(64) y = (ET )-1  x.

Suppose y = 0N.  Then premultiplying both sides of (64) by ET leads to x = 0N
which contradicts x ≠ 0N.  Hence if x ≠ 0N, then the y defined by (64) also satisfies
y ≠%0N.

Let x ≠ 0N and define y by (64).  Premultiplying both sides of (64) by ET leads to

(65) x = ETy where y ≠ 0N.

Hence for x ≠%0N, we have

xTAx = (ETy)TA(ETy) using (65)
           = yTEAETy

   = yTDy using (59)
(66)            =   i=1

NÂ dii   y i
2.

Thus necessary and sufficient conditions for A to be positive definite are:

(67) dii > 0 for i = 1, 2, . . ., N.

Using (66) and (49), it can be seen that necessary and sufficient conditions for A
to be negative definite are:

(68) dii < 0; i = 1, . . ., N.

Similarly, necessary and sufficient conditions for A to be positive semidefinite are:

(69) dii ≥ 0; i = 1, . . ., N.
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Finally, necessary and sufficient conditions for A to be negative semidefinite are:

(70) dii ≤%0; i = 1, . . ., N.

Problem:

5. Let 
  
A = 0 1

1 2
È 
Î 

˘ 
˚ 
.   Which of the definiteness properties (48) - (52) does A

satisfy?

Historical Note:  The above reduction of a quadratic form xTAx to a sum of
squares yTDy was accomplished by J.-L. Lagrange (1759), "Researches sur la
métode de moximis et miniouis", Miscellanea Taurinensi, 1, for the cases N = 2 and
N = 3.  Carl Friedrich Gauss described the general algorithm in 1810; see his
Theory of the Combination of Observations Least Subject to Errors, G.W. Stewart,
translator, SIAM Classics in Applied Mathematics, 1995.  This publication
indicates that Gauss arrived at the principle of least squares estimation in 1794 or
1795 but the French mathematician A.M. Legendre independently derived the
principle (and named it) in 1805 and actually published the method before
Gauss.

6. Checking Second Order Conditions Using Determinants

Let A = [aij] be an N by N symmetric matrix and suppose that we want to check
whether A is a positive definite matrix.

If A is positive definite, then it must be the case that a11 > 0. Why is this?

By the definition of A being positive definite, (48) above, we must have xTAx > 0
for all x ≠ 0N.  Let x = e1, the first unit vector.  Then if A is positive definite, we
must have

(71)   e1
T Ae1 = a11 > 0.

We can rewrite (71) using determinantal notation.  Since the determinant of a one
by one matrix is simply equal to the single element, (71) is equivalent to:

(72) |a11| > 0.

Now if the N by N matrix A is positive definite, it can be seen that we must have

(73)
  
0 < [x1,x2, 0N-2

T ]A[x1, x2 ,0N-2
T ]T = [x1,x2] a11 a12

a12 a22
È 
Î 

˘ 
˚ 

x1
x2

È 
Î 

˘ 
˚ 

for all x1, x2 such that [x1, x2] ≠ [0, 0].  This means that the top left corner 2 by 2
submatrix of A must also be positive definite if A is positive definite.  Hence, by
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the previous section, there exists a 2 by 2 elementary row matrix E(2) which,
along with E(2)T, reduces the 2 by 2 submatrix of A into diagonal form.  Using
(71), it can be seen that the E(2) which will do the job is

(74)
  
E(2 ) ≡

1, 0
-a12 /a11, 1

È 
Î 

˘ 
˚ 

and we have

(75)
  
E(2 ) a11 a12

a12 a22
È 
Î 

˘ 
˚ 

E(2)T =
d11, 0
0, d22

È 
Î 

˘ 
˚ 

where the dii turn out to be:

(76) d11 ≡ a11;

(77) d22 ≡ a22 -   a12
2 /a11.

From the previous section, we know that necessary and sufficient conditions for
the 2 by 2 submatrix of A to be positive definite are:

(78) d11 > 0; d22 > 0.

Since |E(2)| = 1, taking determinants on both sides of (75) yields:

(79)
  
a11 a12
a12 a22

=
d11 0
0 d22

= d11d22 > 0

where the inequality follows from (78).

Using (76) and (79), it can be seen that the determinantal conditions:

(80) |a11| > 0;

(81)
  
a11 a12
a12 a22

> 0

are necessary and sufficient for conditions (78) which in turn are necessary and
sufficient for the positive definiteness of the top left corner 2 by 2 submatrix of A.

If the N by N matrix A is positive definite, it can be seen that we must have
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(82)   0 < [x1,x2, x3,0N-3
T ]A[x1,x2, x3,0N-3

T ]T

  
= [x1,x2,x3]

a11 a12 a13
a12 a22 a23
a13 a23 a33

È 

Î 
Í 

˘ 

˚ 
˙ 

x1
x2
x3

È 

Î 
Í 

˘ 

˚ 
˙ 

for all [x1, x2, x3] ≠ [0, 0, 0].  This means that the top left corner 3 by 3 submatrix
of A must also be positive definite.  Hence there exists a 3 by 3 elementary row
matrix E(3) with |E(3)| = 1 such that

(83)

  

E(3 )
a11 a12 a13
a12 a22 a23
a13 a23 a33

È 

Î 
Í 

˘ 

˚ 
˙ E(3)T =

d11
(3), 0, 0
0, d22

(3), 0
0, 0, d33

(3),

È 

Î 

Í 
Í 

˘ 

˚ 

˙ 
˙ 

where the   dii
(3)  satisfy:

(84)   d11
(3) > 0; d22

(3) > 0; d33
(3) > 0.

Since |E(3)| = 1, taking determinants on both sides of (83) yields

(85)

  

a11 a12 a13
a12 a22 a23
a13 a23 a33

=

d11
(3), 0, 0
0, d22

(3), 0
0, 0, d33

(3)
= d11

(3)d22
(3)d33

(3) > 0

where the inequality in (85) follows from (84).

When A is positive definite, we need to show that the   d11
(3)  and   d22

(3)  which occur
in (83) - (85) are the same as the d11 and d22 which occurred in (76) - (79).  But
this is obviously true using the Gaussian diagonalization algorithm:  when we
diagonalize the 3 by 3 submatrix of A, we must first diagonalize the 2 by 2
submatrix of A and hence the   d11

(3)  and   d22
(3)  in (83) will equal the d 11 and d 22

which occurred in (75).  Hence, we can rewrite (85) as follows:

(86)
  

a11 a12 a13
a12 a22 a23
a13 a23 a33

=
d11 0 0
0 d22 0
0 0 d33

= d11d22d33 > 0;

i.e., we have dropped the superscripts on the dii.  Now it can be seen that the
determinantal inequalities (80), (81) and
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(87)
  

a11 a12 a13
a12 a22 a23
a13 a23 a33

 > 0

along with the equalities in (76), (79) and (86) are necessary and sufficient for the
inequalities

(88) d11 > 0, d22 > 0, d33 > 0

which in turn are necessary and sufficient to for the top left 3 by 3 submatrix of A
to be  positive definite.

Obviously,  the above process can be continued until we obtain the following N
determinantal conditions which are necessary and sufficient for the N by N
symmetric matrix A to be positive definite:

(89) |a11| > 0; 
  

a11 a12
a12 a22

> 0;
a11 a12 a13
a12 a22 a23
a13 a23 a33

> 0; . . .;|A|> 0.

How can we adapt the above analysis to obtain conditions for A to be negative
definite?  Obviously, the Gaussian diagonalization procedure can again be used:
the only difference in the analysis will be that the diagonal elements dii must all
be negative in the case where A is negative definite.  This means that the
determinantal conditions in (89) that involve an odd number of rows and
columns of A must have their signs changed, since these determinants will equal
the product of an odd  number of the dii.  Hence the following N determinantal
conditions are necessary and sufficient for the N by N symmetric matrix A to be
negative definite:

(90) |a11| < 0; 
  

a11 a12
a12 a22

> 0;
a11 a12 a13
a12 a22 a23
a13 a23 a33

< 0; . . .;(-1)N|A|> 0.

Turning now to determinantal conditions for positive semidefiniteness or
negative seimdefiniteness, one might think that the conditions are a
straightforward modification of conditions (89) and (90) respectively, where the
strict inequalities (>) are replaced by weak inequalities (≥).  Unfortunately, this
thought is incorrect as the following example shows.

Example:  A ≡ 
  

0 0 0
0 1 0
0 0 -1

È 

Î 
Í 

˘ 

˚ 
˙ .

In this case, we see that

|a11| = |0| = 0;



19

19

  
a11 a12
a12 a22

= 0 0
0 1 = 0  and

|A| = 0.  Hence the weak inequality form of conditions (89) and (90) are both
satisfied so we might want to conclude that this A is both positive and negative
semidefinite.  However, this is not so:  A is indefinite since   e2

TAe2 = a22 = 1 > 0
and   e3

T Ae3 = a33 = -1 < 0.

The problem with this example is that all of the elements in the first row and
column of A are zero and hence d11 is zero.   Now look back at the inequalities
(79) and (86):  it can be seen that if d11 = 0, then these inequalities are no longer
valid.   However, if instead of always picking submatrices of A that included the
first row and column of A, we picked submatrices of A that excluded the first
row and column, then we would discover that the submatrix of A which
consisted of rows 2 and 3 and columns 2 and 3 is indefinite; i.e., we have

(91) a22 = 1 > 0 and 
  
a22 a23
a23 a33

 = -1 < 0.

In order to determine whether A is positive semidefinite, we replace the strict
inequalities in (89) by weak inequalities but the resulting weak inequalities must
be checked for all possible choices of the rows of A; i.e., necessary and sufficient
conditions for A to be positive semidefinite are:

(92) |aii| = aii ≥ 0 for i = 1, 2, . . ., N;

  

ai1i1 ai1i2
ai1i2

ai2i2
 ≥ 0 for i ≤ i1 < i2 ≤ N;

   

  

ai1i1 ai1i2
ai1i3

ai1i2 ai2i2 ai2i3
ai1i3 ai2i3 ai3i3

 ≥ 0 for 1 ≤ i1 < i2 < i3 ≤  N;

  :.

|A| ≥%0.

In the 2 by 2 case, conditions (92) boil down to the following 3 conditions:

(93) a11 ≥%0; a22 ≥%0; |A| = a11a22 -   a12
2  ≥ 0.

In the 3 by 3 case, conditions (92) reduce to the following 7 determinantal
conditions:
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(94) a11 ≥ 0; a22 ≥ 0;  a33 ≥ 0;

  
a11 a12
a12 a22

≥ 0;  a11 a13
a13 a33

≥ 0; a22 a23
a23 a33

≥ 0; |A|≥ 0.

If A is a symmetric N by N matrix, then necessary and sufficient determinantal
conditions for A to be negative semidefinite are:

(95) (-1) |aii|≥ 0; i = 1, 2, . . ., N;

(-1)2

  

ai1i1 ai1i2
ai1i2

ai2i2
≥ 0; 1 ≤ i1 < i2 ≤ N;

(-1)3

  

ai1i1 ai1i2
ai1i3

ai1i2 ai2i2 ai2i3
ai1i3 ai2i3 ai3i3

 ≥ 0; 1 ≤ i1 < i2 < i3 ≤ N;

  :.

(-1)N |A| ≥ 0.

Problems:

6. Let 
  
A ≡ 0 1

1 0
È 
Î 

˘ 
˚ 
.   Use the Gaussian diagonalization procedure to determine

the definiteness properties of A.

7. Does the A defined in problem 6 above satisfy the determinantal
conditions (93) for positive semidefiniteness?

8. Solve   maxx1, x2 {f(x1, x2):  x1 > 0, x 2 > 0} (if possible) where f is defined as
follows:
(a)   f(x1,x2) ≡ -x1

2 + x1x2 - x2
2 + x1 + x2

(b)  f(x1, x2) ≡ ln x1 + ln x2 + x1 x2 - 2x1 - 2x2.
Check second order conditions when appropriate.

9. Consider the following 2 input, 1 output profit maximization problem:

(i)   maxy,x1,x 2 {py - w1x1 - w2x2 :  y = f(x1, x2) }

where f is the producer's production function, wi > 0 is the price of input i and
p > 0 is the price of output.  The unconstrained maximization problem that is
equivalent to (i) is:
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(ii)   maxx1,x2  { pf(x1, x2) - w1x1 - w2x2 } .

Assume that f is twice continuously differentiable and   x1
*  = d1(p, w1, w2) > 0 and

  x2
* = d 2(p, w 1, w 2) > 0 solve (ii) and that the first and second order sufficient

conditions for a strict local maximum are satisfied at this point   x1
* ,   x2

* .  Note that
the producer's supply function y* = s(p, w1, w2) can be determined as a function
of the two input demand functions d1 and d2:

(iii) s(p, w1, w2) ≡ f[d1(p, w1, w2), d2(p, w1, w2)].

(a) Try to determine the signs of the following derivatives:  ∂s(p, w1, w2)/∂p;
∂d1(p, w1, w2)/∂w1; ∂d2(p, w1, w2)/∂w2.

(b) Prove that:  ∂d1(p, w1, w2)/∂w2 = ∂d2(p, w1, w2)/∂w1.
(c) Prove that:  ∂s(p, w1, w2)/∂w1 = -∂d1(p, w1, w2)/∂p.

Note:  (b) and (c) are Hotelling symmetry conditions.
Hint: Look at the 2 first order conditions for (ii).  Differentiate these 2 equations
with respect to p; you will obtain a system of 2 equations involving the unknown
derivatives ∂d1(p, w1, w2)/∂p and ∂d2(p, w1, w2)/∂p.  Now differentiate the 2
first order conditions with respect to w1; you will obtain a system of 2 equations
involving the derivatives ∂d1(p, w1, w2)/∂w1 and ∂d2(p, w1, w2)/∂w1 . . .

10. Let 
  
F ≡

f11 f12
f21 f22

È 
Î 

˘ 
˚ 
 be a symmetric matrix that satisfies the conditions:

(i) f11 < 0;

(ii) f11f22 -   f12
2 > 0.

Show that the following inequality holds:

(iii) -f11 + 2f12 - f22 > 0.

Hint:  -f11 + 2f12 - f22 = -[1, -1] 
  

f11 f12
f12 f22

È 
Î 

˘ 
˚ 

1
-1

È 
Î 

˘ 
˚ 
.

11. Consider a simple two sector model for the production sector of an
economy.  Sector 1 (the "service" section) produces aggregate consumption C
using an intermediate input M ("manufactured" goods) and inputs of labour L1
according to the production function f:

(i) C = f(M, L1).
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Sector 2 (the "manufacturing" sector produces the intermediate output M using
inputs of labour L2 according to the production function

(ii) M = L2.

(Each sector can use other primary inputs such as capital, land or natural
resource inputs, but since we hold these other inputs fixed in the short run, we
suppress mention of them in the above notation).  There is an aggregate labour
constraint in the economy:

(iii) L1 + L2 =   L  > 0 where   L  is fixed.

The manufacturer gets the revenue p > 0 for each unit of manufacturing output
produced but the government puts a positive tax t > 0 on the sale of each unit of
manufactures so that the service sector producer faces the price p(1 + t) for each
unit of M used.

The service sector producer is assumed to be a competitive profit maximizer; i.e.,
M* = M(t) and   L1

*  = L1(t) is the solution to:

(iv)   maxM,L1 {f(M, L1) - p(1 + t)M - wL1}

where w > 0 is the wage rate and the price of the consumption good is 1.  We
assume that the following first and second order conditions for the
unconstrained maximization problem (iv) are satisfied:

(v) f1(M*,   L1
* ) - p(1 + t) = 0;

(vi) f2(M*,   L1
* ) - w          = 0;

(vii)   f11
*  ≡ f11(M*,   L1

* ) < 0;

(viii)   f22
*  ≡ f22(M*,   L1

* ) < 0;

(xi)   f11
*

  f22
*  - (  f12

* )2 > 0 where   f12
* ≡ f12(M*,   L1

* ).

One more equation is required; namely we assume that the price of the
manufactured good is equal to the wage rate; i.e., we have:

(x) p = w.

Equation (x) is consistent with profit maximizing behavior in the manufacturing
sector assuming that the production function (ii) is valid.
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Now substitute equations (ii), (iii) and (x) into the first order conditions (v) and
(vi) and we obtain the following two equations which characterize equilibrium in
this simplified economy:

(xi) f1(  L  - L1(t), L1(t)] - w(t)(1 + t) = 0;

(xii) f2[  L  - L1(t), L1(t)] - w(t) = 0;

where the 2 unknowns in (xi) and (xii) are L1(t) (employment in the service
sector) and w(t) (the wage rate faced by both sectors) which are regarded as
functions  of the manufacturer's sales tax t.

(a) Differentiate (xi) and (xii) with respect t and solve the resulting two
equations for the derivatives   ¢ L 1(t) and   ¢ w (t).

(b) Show that   ¢ L 1(0) > 0.  Hint:  Use part (a) and problem 10 above.

Consumption regarded as a function of the level of sales taxation is defined as
follows:

(xiii) C(t) ≡ f[  L  - L1(t), L1(t)]

(c) Show that   ¢ C (t) = -tw(t)   ¢ L 1(t).  Hint:  Use (xi) - (xiii).

(d) Compute   ¢ C (0) and   ¢ ¢ C (0).  Hint:  Use part (c).

Now we can use the derivatives in part (d) above to calculate a second order
Taylor series approximation to C(t); i.e., we have

(xiv) C(t) @  C(0) +   ¢ C (0)t + (1/2)   ¢ ¢ C (0)t2.

(e) Treat (xiv) as an exact equality and show that C(t) < C(0).  Hint:  Use parts
(b) and (d).

Comment:  This problem shows that in general, the aggregate net output of the
entire production sector falls if transactions between sectors are taxed.  There are
many applications of this result.  Note that (xiv) shows that the loss of output is
proportional to the square of the tax rate, t2.

(f) Suppose that the government now subsidizes  the output of the
manufacturing sector; i.e., t is now negative instead of being positive.  Can we
still conclude that C(t) < C(0)?

This problem shows you that you now have the mathematical tools that will
enable you to construct simple models that cast some light on real life, practical
economic problems.


