To obtain an eigenvector $x^{2} \neq 0_{2}$ for $\square_{2}=0$, define:
$B^{2} \equiv A \square \square_{2} I_{2}=\begin{array}{lll}\square, & 1 \square \square 0 \square, & 0 \square \\ \square & 1 \square & \square, \\ \square & 1 \square & 1 \square\end{array}$
To transform B^{2} into an upper triangular matrix, subtract the first row of B^{2} from the second row of B^{2} and we obtain U^{2} :
$\mathrm{U}^{2} \equiv \begin{array}{ll}\square, & 1 \square \\ \square & 0\end{array}$
The first zero element of U^{2} is $u_{22}^{2}=0$. Hence set $x_{2}^{2}=1$ and solve
$U^{2} x^{2}=\begin{array}{ll}\square, & 1 \square \square x_{1}^{2} \square=\square \\ 母, & 0 \square \square 1-\square\end{array}$
for $x_{1}^{2}=-1$. Hence $x^{2}=[-1,1]^{T}$ is an eigenvector of A that corresponds to the eigenvalue $\square_{2}=0$.

Note that the two eigenvectors x^{1} and x^{2} that were constructed in Examples 2 and 3 above had the property.
(139) $\quad \mathrm{x}^{1 \mathrm{~T}^{2}}=0$.

This property turns out to be a general property of eigenvectors of a symmetric A that correspond to distinct eigenvalues as we shall see later.

Problems:

17. Calculate the 2 eigenvalues \square_{1} and \square_{2} of $A \equiv \stackrel{R}{\square} \frac{1}{1} \frac{1}{\square}$ and calculate eigenvectors x^{1} and x^{2} that correspond to \square_{1} and \square_{2}.
18. Calculate the 3 eigenvalues and eigenvectors of $\left.A \equiv \begin{array}{lll}{\left[\begin{array}{l}\square \\ 0\end{array}\right.} & 0 & 0 \square \\ 2 & 1 & 2 \\ \hline\end{array}\right]$

Hint: Taking into account the block diagonal structure of A, you may find the results of Problem 17 useful.
(140) Definition: Two N dimensional vectors x and y are orthogonal or perpendicular iff $\mathrm{x}^{\mathrm{T}} \mathrm{y}=0$.

To see why $x^{T} y=0$ implies x and y are perpendicular, let x and y be two N dimensional vectors of unit length; i.e.,

$$
\begin{equation*}
x^{T} x=\square_{i=1}^{N} x_{i}^{2}=1 \quad \text { and } \quad y^{T} y=\square_{i=1}^{N} y_{i}^{2}=1 . \tag{141}
\end{equation*}
$$

Now look at the vector $\mathrm{z} \equiv \mathrm{x}-\mathrm{y}$ which has the same length as the line segment s which joins x to y . If $\mathrm{N}=2$, we have the following picture.

If x and y are perpendicular and of unit length, then by Pythagoras' Theorem in geometry, the length of the segment s (which is equal to the length of z) is $\sqrt{2}$; i.e., we have

$$
\begin{equation*}
z^{T} z=x^{T} x+y^{T} y=1+1=2 . \tag{142}
\end{equation*}
$$

Now substitute $\mathrm{z}=\mathrm{x}-\mathrm{y}$ into (142) and simplify:

$$
\begin{array}{rlrl}
2 & =(x-y)^{\mathrm{T}}(x-y) & \\
& =x^{T} x-x^{T} y-y^{T} x+y^{T} y & & \\
& =2-x^{T} y-y^{T} x & & \text { using }(141) \\
& =2-2 x^{T} y & & \text { since } x^{T} y=y^{T} x . \tag{143}
\end{array}
$$

Equation (143) implies that $\mathrm{x}^{\mathrm{T}} \mathrm{y}=0$. Thus if x and y are of unit length and are perpendicular, then $x^{T} y=0$. This argument can be extended to the case where x $\neq 0_{N}$ and $y \neq 0_{N}$. (If x and y are perpendicular, then so are $x /\left(x^{T} x\right)^{1 / 2} \equiv a$ and $y /\left(y^{T} y\right)^{1 / 2} \equiv b$. Now a and b are perpendicular and of unit length and so we can apply the above argument to conclude that $\mathrm{a}^{\mathrm{T}} \mathrm{b}=0$. But this implies $\mathrm{x}^{\mathrm{T}} \mathrm{y}=0$ as well).
(144) Theorem: Suppose that the N eigenvalues $\square_{1}, \square_{2}, \ldots, \square_{N}$ of the N by N symmetric matrix A are all distinct. Let $\mathrm{x}^{1}, \mathrm{x}^{2}, \ldots, \mathrm{x}^{\mathrm{N}}$ be eigenvectors corresponding to these distinct eigenvalues. Then $x^{i T} x j=0$ for all $i \neq j$; i.e., the eigenvectors $\mathrm{x}^{1}, \mathrm{x}^{2}, \ldots, \mathrm{x}^{\mathrm{N}}$ are mutually orthogonal.

Proof: Let $\mathrm{i} \neq \mathrm{j}$. By the definition of $\mathrm{x}^{\mathrm{i}} \neq 0_{\mathrm{N}}$ and \square_{i} being an eigenvalue and eigenvector of A , we have:
(145) $A x^{i}=\square_{i} x^{i}$
and by the definition of \square_{j} and $x^{j} \neq 0_{N}$ being an eigenvalue and eigenvector of A, we have:

$$
\begin{equation*}
\mathrm{Axj}=\square_{\mathrm{j}}^{\mathrm{x}} \mathrm{j} . \tag{146}
\end{equation*}
$$

Premultiply both sides of (145) by x^{j} and obtain:

$$
\begin{equation*}
x^{j \mathrm{~T}} \mathrm{~A} x^{\mathrm{i}}=\square_{\mathrm{i}} \mathrm{x}^{\mathrm{j}} \mathrm{~T}_{\mathrm{x}^{\mathrm{i}}} . \tag{147}
\end{equation*}
$$

Now take transposes of both sides of (147) and get:

$$
\begin{equation*}
\Pi_{i} x^{i T} \mathrm{~T}_{\mathrm{x}}^{\mathrm{j}}=\mathrm{x}^{\mathrm{iT}} \mathrm{~A}^{\mathrm{T}} \mathrm{x}_{\mathrm{j}}=x^{\mathrm{i} \mathrm{~T}} \mathrm{~A} x^{\mathrm{j}} \tag{148}
\end{equation*}
$$

where the second equality in (148) follows from $A=A^{T}$. Premultiply both sides of (146) by x^{iT} and obtain:

$$
\begin{equation*}
\square_{\mathrm{j}} x^{\mathrm{iT}} x^{\mathrm{j}}=x^{\mathrm{i} T} A x j . \tag{149}
\end{equation*}
$$

Since the right hand sides of (148) and (149) are equal, so are the left hand sides, so we obtain:
(150) $\quad \square_{i} x^{i T} x^{j}=\square_{j} x^{i T} x^{j} \quad$ or
(151) $\quad\left(\square_{i}-\square_{j}\right) x^{i T} x j=0$.

Since $\square_{i} \neq \square_{j}$ by assumption, (151) implies that $x^{i T}{ }^{x}=0$; i.e., x^{i} is orthogonal to $x j$.
Q.E.D.

10. The Diagonalization of a Symmetric Matrix by an Orthonormal Transformation

Suppose that A is an N by N symmetric matrix with distinct eigenvalues $\square_{1}, \square_{2}, \ldots, \square_{N}$ with corresponding nonzero eigenvectors $x^{1}, x^{2}, \ldots, x^{N}$. (We will deal with the case where the eigenvalues are not necessarily distinct later in this section). We normalize the eigenvectors $x^{i} \neq 0_{N}$ so that they are of unit length; i.e., for $\mathrm{i}=1,2, \ldots, \mathrm{~N}$, define the normalized eigenvector u^{i} by

$$
\begin{equation*}
u^{\mathrm{i}}=\mathrm{x}^{\mathrm{i}} /\left(\mathrm{x}^{\mathrm{iT}} x^{\mathrm{i}}\right)^{1 / 2} ; \quad \mathrm{i}=1,2, \ldots, \mathrm{~N} . \tag{152}
\end{equation*}
$$

It can be seen that since $A x^{i}=\square_{i} x^{i}$ for $i=1, \ldots, N$, we also have:

$$
\begin{equation*}
A u^{i}=\Pi_{i} u^{i} ; \quad i=1,2, \ldots, N, \tag{153}
\end{equation*}
$$

and the u^{i} also satisfy:

$$
\begin{array}{rlr}
u^{i T} u^{i} & =\left[x^{i} /\left(x^{i T} x_{i i}\right)^{1 / 2}\right]^{T}\left[x^{i} /\left(x^{i T} x^{i}\right)^{1 / 2}\right] \tag{154}\\
& =x^{i T} x^{i} /\left(x^{i T} x^{i}\right)^{1 / 2+1 / 2} & \\
& =1 & \text { for } i=1, \ldots, N .
\end{array}
$$

From Theorem (144), we have $x^{i T} x j=0$ if $i \neq j$. This implies that the u^{i} have the same orthogonality properties; i.e., we have:

$$
\begin{equation*}
\mathrm{u}^{\mathrm{i} T} \mathrm{u}^{\mathrm{j}}=0 \quad \text { if } \quad \mathrm{i} \neq \mathrm{j} . \tag{155}
\end{equation*}
$$

Define the N by N matrix U of the normalized eigenvectors of A by:

$$
\begin{equation*}
\mathrm{U} \equiv\left[\mathrm{u}^{1}, \mathrm{u}^{2}, \ldots, \mathrm{u}^{\mathrm{N}}\right] . \tag{156}
\end{equation*}
$$

Using (154) and (155), it can be seen that
(157) $\quad U^{T} U=I_{N}$.

But (157) tells us that U^{T} is a left inverse (and hence is an inverse) for U; i.e.,

$$
\begin{equation*}
\mathrm{U}^{-1}=\mathrm{U}^{\mathrm{T}} \tag{158}
\end{equation*}
$$

Taking determinants of both sides of (157) yields:

$$
\begin{align*}
& 1=\left|\mathrm{I}_{\mathrm{N}}\right|=\left|\mathrm{U}^{\mathrm{T}} \mathrm{U}\right|=\left|\mathrm{U}^{\mathrm{T}}\right||\mathrm{U}|=|\mathrm{U}|^{2}, \text { or } \tag{158}\\
& |\mathrm{U}|=+1 \text { or }-1 .
\end{align*}
$$

A square matrix U that satisfies (157) is called an orthonormal matrix, and (159) shows us that its determinant equals +1 or -1 .

Return to the N eigenvalue, normalized eigenvector equations (153). Using definition (156), it can be seen that the N equations (153) can be rewritten as the following matrix equation:

$$
\begin{aligned}
& A U=\left[\square_{1} u^{1}, \square_{2} u^{2}, \ldots, \square_{N u}{ }^{N}\right]
\end{aligned}
$$

(160) $=\mathrm{U} \square$
where \square is a diagonal matrix with the eigenvalues of A on the main diagonal of \square. Now premultiply both sides of (160) by U^{T} and get:

$$
\begin{equation*}
\mathrm{U}^{\mathrm{T}} \mathrm{AU}=\mathrm{U}^{\mathrm{T}} \mathrm{U} \square=\square \quad \text { using (157) } \tag{161}
\end{equation*}
$$

We can now use the eigenvector-eigenvalue method for diagonalizing A, the matrix equation (161) above, in exactly the same way that we used the GaussLagrange diagonalization method (59) above in order to determine the definiteness properties of A. For example, since $|U| \neq 0$, it can be seen that the conditions for positive definiteness of A,

$$
\begin{equation*}
x^{T} A x>0 \quad \text { for all } x \neq 0_{N} \tag{162}
\end{equation*}
$$

are equivalent to

$$
\begin{align*}
0 & <x^{\mathrm{T}} A x, & & x \neq 0_{N} \\
& =y^{\mathrm{T}} U^{\mathrm{T}} A U y, & & \text { letting } x=\text { Uy so } \mathrm{y} \neq 0_{\mathrm{N}} \\
& =y^{\mathrm{T}} \square y, & & \text { using }(161) \\
& =\square_{\mathrm{i}=1}^{N} \square_{i} y_{i}^{2} . & &
\end{align*}
$$

Thus A is positive (negative) definite iff all of the eigenvalues of $A, \square_{1}, \square_{2}, \ldots, \square_{N}$, are positive (negative). Of course A is positive (negative) semidefinite iff all of the eigenvalues of A are nonnegative (nonpositive).

However, we established the above results under the assumption that all of the eigenvalues of A were distinct. In the next section, we shall relax this assumption that the eigenvalues of A are distinct, but we will still get the same results as in the above paragraph.

11. The Diagonalization of a Symmetric Matrix in the General Case

In order to derive the matrix equation (161) in the previous section without the assumption that the eigenvalues of the symmetric N by N matrix are distinct, we need two preliminary results.
(164) The Gram-Schmidt Orthogonalization Procedure: Let the N dimensional vectors $x^{1}, x^{2}, \ldots, x^{K}$ be linearly independent (so that $K \leq N$). Then for $k=1,2, \ldots$., K ; each vector x^{K} can be expressed as a linear combination of k orthonormal vectors $\mathrm{y}^{1}, \mathrm{y}^{2}, \ldots, \mathrm{y}^{K}$; i.e., for $\mathrm{k}=1,2, \ldots, \mathrm{~K}$:

$$
\begin{equation*}
x^{k}=\square_{j=1}^{k} a_{k j} y^{j} \quad \text { where } \tag{165}
\end{equation*}
$$

$$
y^{i T} y \mathrm{y}=\mathrm{Bl}_{1}^{1} \quad \text { if } \quad \begin{array}{ll}
\mathrm{i}=\mathrm{j} & \text { if } \tag{166}\\
\mathrm{i} \neq \mathrm{j}
\end{array} \text { and }
$$

The a_{kj} in equations (165) are scalars.
Proof: For $k=1$, take $y^{1} \equiv x^{1} /\left(x^{1 T} x^{1}\right)^{1 / 2}$. Note that $x^{1 T_{x}}>0$ since if $x^{1}=0 N$, then the x^{k} would not be linearly independent. Thus we have $x^{1}=a_{11} y^{1}$ where $a_{11} \equiv$ $\left(x^{1 T^{1}}\right)^{1 / 2}$.

For $\mathrm{k}=2$, define the vector z^{2} as follows:

$$
\begin{equation*}
z^{2} \equiv x^{2}-\left(x^{2 T} y^{1}\right) y^{1} \tag{167}
\end{equation*}
$$

Suppose $\mathrm{z}^{2}=0_{\mathrm{N}}$. Then $\mathrm{x}^{2}=\left(\mathrm{x}^{2 \mathrm{~T}} \mathrm{y}^{1}\right) \mathrm{y}^{1}=\mathrm{x}^{1}\left(\mathrm{x}^{2 \mathrm{~T}} \mathrm{y}^{1}\right) /\left(\mathrm{x}^{\left.1 \mathrm{~T}_{\mathrm{x}}{ }^{1}\right)^{1 / 2}, ~}\right.$
which would imply that x^{2} is a multiple of x^{1} and hence x^{1} and x^{2} would be linearly dependent. Thus our supposition is false and $z^{2} \neq 0_{N}$.

We show that z^{2} is orthogonal to y^{1} :

$$
\begin{align*}
\mathrm{y}^{1 \mathrm{~T}} \mathrm{z}^{2} & =y^{1 \mathrm{~T}}\left[\mathrm{x}^{2}-\left(x^{2 \mathrm{~T}} y^{1}\right) y^{1}\right] & & \tag{168}\\
& =y^{1 T} x^{2}-\left(x^{2 T} y^{1}\right) y^{1 T} y^{1} & & \\
& =y^{1 T} x^{2}-\left(x^{2 T} y^{1}\right) & & \text { using } y^{1 T} y^{1}=1 \\
& =0 & & \text { since }\left(x^{2 T} y^{1}\right)^{T}=y^{1 T} x^{2} .
\end{align*}
$$

Now define y^{2} as the following normalization of z^{2} :

$$
\begin{equation*}
\mathrm{y}^{2} \equiv \mathrm{z}^{2} /\left(\mathrm{z}^{2 \mathrm{~T}} \mathrm{z}^{2}\right)^{1 / 2} \tag{169}
\end{equation*}
$$

and so we have using (168) and (169)):

$$
\begin{equation*}
\mathrm{y}^{1 \mathrm{~T}} \mathrm{y}^{2}=0, \mathrm{y}^{2 \mathrm{~T}} \mathrm{y}^{2}=1 \text { and } \mathrm{y}^{1 \mathrm{~T}} \mathrm{y}^{1}=1 \tag{170}
\end{equation*}
$$

If we substitute (169) into (167) and rearrange terms, we have:

$$
\begin{align*}
x^{2} & =\left(x^{2 T} \mathrm{y}^{1}\right) \mathrm{y}^{1}=\left(z^{2 \mathrm{~T}} z^{2}\right)^{1 / 2} \mathrm{y}^{2} \tag{171}\\
& \equiv \mathrm{a}_{21} \mathrm{y}^{1}+\mathrm{a}_{11} \mathrm{y}^{2}
\end{align*}
$$

which is (165) for $\mathrm{k}=2$.
For a general k, having defined $y^{1}, y^{2}, \ldots, y^{k-1}$, define z^{k} as follows:

$$
\begin{equation*}
z^{k} \equiv x^{k}-\square_{j=1}^{k} \square_{1}^{1}\left(x^{k T} y \mathrm{y}\right) y^{j} . \tag{172}
\end{equation*}
$$

If $z^{k}=0_{N}$, then we can show that $x^{1}, x^{2}, \ldots, x^{k}$ are linearly dependent which contradicts our assumption. Thus $z^{k} \neq 0_{N}$. It is also straightforward to show that for $\mathrm{l}=1,2, \ldots, k-1$:

$$
\begin{align*}
& y^{1 T} z^{k}=y^{l T}\left[x^{k}-\square_{j=1}^{k} \square_{1}^{1}\left(x^{k T} y^{j}\right) y^{j}\right] \tag{173}\\
& =y^{I T} x^{k}-\square_{j=1}^{k}{ }^{1}\left(x^{k T} y j\right) y^{l T} y j \\
& =y^{l T} x^{k}-\left(x^{k T} y^{l}\right) y^{1 T} y^{l} \quad \text { since } y^{l T} y j=0 \quad \text { if } \mathrm{l} \neq \mathrm{j} \\
& =y^{1 T} x^{k}-\left(x^{k T} y^{k}\right) \\
& =0 \text {. } \\
& \text { since } y^{1 \mathrm{~T}} \mathrm{y}^{\mathrm{l}}=1
\end{align*}
$$

Thus z^{k} is orthogonal to $y^{1}, y^{2}, \ldots, y^{k-1}$. Now define y^{k} as the following normalization of z^{k} :

$$
\begin{equation*}
\mathrm{y}^{\mathrm{k}} \equiv \mathrm{z}^{\mathrm{k}} /\left(\mathrm{z}^{\mathrm{kT}} \mathrm{z}^{\mathrm{k}}\right)^{1 / 2} \tag{174}
\end{equation*}
$$

Now substitute (174) into (172) and we obtain:

$$
\begin{align*}
x^{k} & =\square_{j=1}^{k} \square_{1}\left(x^{k T} y^{j}\right) y^{j}+\left(z^{k T} z^{k}\right)^{1 / 2} y^{k} \tag{175}\\
& \equiv \square_{j=1}^{k} \square_{1}^{1} a_{k j} y^{j}+a_{k k} y^{k} .
\end{align*}
$$

Q.E.D.

The Gram-Schmidt orthogonalization procedure is very useful in econometrics.
We need another preliminary result about orthonormal N by N matrices U (recall this means $\mathrm{U}^{\mathrm{T}} \mathrm{U}=\mathrm{I}_{\mathrm{N}}$).
(176) Lemma: Let U^{1} and U^{2} be two N by N orthonormal matrices. Then the product matrix $\mathrm{U} \equiv \mathrm{U}^{1} \mathrm{U}^{2}$ is also orthonormal.

Proof: $\mathrm{U}^{\mathrm{T}} \mathrm{U}=\left(\mathrm{U}^{1} \mathrm{U}^{2}\right)^{\mathrm{T}}\left(\mathrm{U}^{1} \mathrm{U}^{2}\right)=\mathrm{U}^{2 \mathrm{~T}} \mathrm{U}^{1 \mathrm{~T}} \mathrm{U}^{1} \mathrm{U}^{2}=\mathrm{U}^{2 \mathrm{~T}} \mathrm{I}_{\mathrm{N}} \mathrm{U}^{2}=\mathrm{I}_{\mathrm{N}}$.

Now we are ready to derive the diagonal decomposition of the N by N matrix A , $\mathrm{U}^{\mathrm{T}} \mathrm{AU}=\square$ where $\mathrm{U}^{\mathrm{T}} \mathrm{U}=\mathrm{I}_{\mathrm{N}}$, assuming only that A is symmetric; i.e., we want to drop our hypothesis that we made in the previous section that the eigenvalues of A were distinct.

Let A be N by N and symmetric and let \square_{1} be any eigenvalue of A with corresponding normalized eigenvector y^{1}; i.e., we have

$$
\begin{equation*}
\mathrm{Ay}^{1}=\square_{1} \mathrm{y}^{1} \quad \text { with } \quad \mathrm{y}^{1 \mathrm{~T}} \mathrm{y}^{1}=1 \tag{177}
\end{equation*}
$$

