To obtain an eigenvector $x^2 \neq 0_2$ for $\lambda_2 = 0$, define:

$$\mathbf{B}^2 = \mathbf{A} - \lambda_2 \mathbf{I}_2 = \begin{bmatrix} 1, & 1\\ 1, & 1 \end{bmatrix} - 0 \begin{bmatrix} 1, & 0\\ 0, & 1 \end{bmatrix} = \begin{bmatrix} 1, & 1\\ 1, & 1 \end{bmatrix}$$

To transform B^2 into an upper triangular matrix, subtract the first row of B^2 from the second row of B^2 and we obtain U^2 :

$$\mathbf{U}^2 = \begin{bmatrix} 1, & 1 \\ 0, & 0 \end{bmatrix}.$$

The first zero element of U^2 is $u_{22}^2 = 0$. Hence set $x_2^2 = 1$ and solve

$$\mathbf{U}^{2}\mathbf{x}^{2} = \begin{bmatrix} 1, & 1\\ 0, & 0 \end{bmatrix} \begin{bmatrix} x_{1}^{2}\\ 1 \end{bmatrix} = \begin{bmatrix} 0\\ 0 \end{bmatrix}$$

for $x_1^2 = -1$. Hence $x^{-2} = [-1, 1]^T$ is an eigenvector of A that corresponds to the eigenvalue $\lambda_2 = 0$.

Note that the two eigenvectors x^1 and x^2 that were constructed in Examples 2 and 3 above had the property.

(139)
$$x^{1T}x^2 = 0.$$

This property turns out to be a general property of eigenvectors of a symmetric A that correspond to distinct eigenvalues as we shall see later.

Problems:

17. Calculate the 2 eigenvalues λ_1 and λ_2 of $A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$ and calculate eigenvectors x^1 and x^2 that correspond to λ_1 and λ_2 .

18. Calculate the 3 eigenvalues and eigenvectors of A = $\begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 2 \end{bmatrix}$.

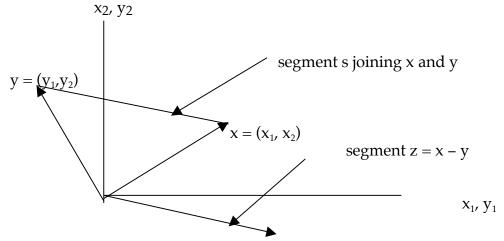
Hint: Taking into account the block diagonal structure of A, you may find the results of Problem 17 useful.

(140) **Definition:** Two N dimensional vectors x and y are *orthogonal* or *perpendicular* iff $x^{T}y = 0$.

To see why $x^Ty = 0$ implies x and y are perpendicular, let x and y be two N dimensional vectors of unit length; i.e.,

(141)
$$x^{T}x = \sum_{i=1}^{N} x_{i}^{2} = 1$$
 and $y^{T}y = \sum_{i=1}^{N} y_{i}^{2} = 1$

Now look at the vector z = x - y which has the same length as the line segment s which joins x to y. If N = 2, we have the following picture.



If x and y are perpendicular and of unit length, then by Pythagoras' Theorem in geometry, the length of the segment s (which is equal to the length of z) is $\sqrt{2}$; i.e., we have

(142)
$$z^T z = x^T x + y^T y = 1 + 1 = 2.$$

Now substitute z = x - y into (142) and simplify:

$$\begin{array}{l} 2 = (x - y)^{T} (x - y) \\ = x^{T}x - x^{T}y - y^{T}x + y^{T}y \\ = 2 - x^{T}y - y^{T}x \\ (143) = 2 - 2x^{T}y \\ \end{array} \qquad \begin{array}{l} \text{using (141)} \\ \text{since } x^{T}y = y^{T}x \\ \end{array}$$

Equation (143) implies that $x^Ty = 0$. Thus if x and y are of unit length and are perpendicular, then $x^Ty = 0$. This argument can be extended to the case where $x \neq 0_N$ and $y \neq 0_N$. (If x and y are perpendicular, then so are $x/(x^Tx)^{1/2} = a$ and $y/(y^Ty)^{1/2} = b$. Now a and b are perpendicular and of unit length and so we can apply the above argument to conclude that $a^Tb = 0$. But this implies $x^Ty = 0$ as well).

(144) **Theorem:** Suppose that the N eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_N$ of the N by N symmetric matrix A are all *distinct*. Let x^1, x^2, \ldots, x^N be eigenvectors corresponding to these distinct eigenvalues. Then $x^{iT}x^{j} = 0$ for all $i \neq j$; i.e., the eigenvectors x^1, x^2, \ldots, x^N are mutually *orthogonal*.

Proof: Let $i \neq j$. By the definition of $x^i \neq 0_N$ and λ_i being an eigenvalue and eigenvector of A, we have: (145) $Ax^i = \lambda_i x^i$

and by the definition of λ_j and $x^j \neq 0_N$ being an eigenvalue and eigenvector of A, we have:

(146) $Ax^{j} = \lambda_{j} x^{j}$.

Premultiply both sides of (145) by x^{jT} and obtain:

(147) $x^{jT}Ax^{i} = \lambda_{i} x^{jT}x^{i}$.

Now take transposes of both sides of (147) and get:

(148) $\lambda_i x^{iT} x^j = x^{iT} A^T x^j = x^{iT} A x^j$

where the second equality in (148) follows from $A = A^{T}$. Premultiply both sides of (146) by x^{iT} and obtain:

(149)
$$\lambda_i x^{iT} x^j = x^{iT} A x^j$$
.

Since the right hand sides of (148) and (149) are equal, so are the left hand sides, so we obtain:

(150)
$$\lambda_i x^{iT} x^j = \lambda_j x^{iT} x^j$$
 or

(151) $(\lambda_i - \lambda_j) x^{iT} x^j = 0.$

Since $\lambda_i \neq \lambda_j$ by assumption, (151) implies that $x^{iT}x^j = 0$; i.e., x^i is orthogonal to x^j . Q.E.D.

10. The Diagonalization of a Symmetric Matrix by an Orthonormal Transformation

Suppose that A is an N by N symmetric matrix with *distinct* eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_N$ with corresponding nonzero eigenvectors x^1, x^2, \ldots, x^N . (We will deal with the case where the eigenvalues are not necessarily distinct later in this section). We *normalize* the eigenvectors $x^i \neq 0_N$ so that they are of unit length; i.e., for $i = 1, 2, \ldots, N$, define the *normalize eigenvector* uⁱ by

(152) $u^i = x^i/(x^{iT}x^i)^{1/2}$; i = 1, 2, ..., N.

It can be seen that since $Ax^i = \lambda_i x^i$ for i = 1, ..., N, we also have:

(153)
$$Au^i = \lambda_i u^i;$$
 $i = 1, 2, ..., N_i$

and the uⁱ also satisfy:

(154)
$$u^{iT}u^{i} = [x^{i}/(x^{iT}x^{i})^{1/2}]^{T} [x^{i}/(x^{iT}x^{i})^{1/2}]$$

= $x^{iT}x^{i}/(x^{iT}x^{i})^{1/2+1/2}$
= 1 for i = 1, ..., N.

From Theorem (144), we have $x^{iT}x^{j} = 0$ if $i \neq j$. This implies that the u^{i} have the same orthogonality properties; i.e., we have:

(155)
$$\mathbf{u}^{iT}\mathbf{u}^{j} = 0$$
 if $i \neq j$.

Define the N by N matrix U of the normalized eigenvectors of A by:

(156) $U = [u^1, u^2, \dots, u^N].$

Using (154) and (155), it can be seen that

(157)
$$U^{T}U = I_{N}$$
.

But (157) tells us that U^T is a left inverse (and hence is an inverse) for U; i.e.,

(158)
$$U^{-1} = U^T$$
.

Taking determinants of both sides of (157) yields:

(158) $1 = |I_N| = |U^T U| = |U^T| |U| = |U|^2$, or

(159) |U| = +1 or -1.

A square matrix U that satisfies (157) is called an *orthonormal matrix*, and (159) shows us that its determinant equals +1 or -1.

Return to the N eigenvalue, normalized eigenvector equations (153). Using definition (156), it can be seen that the N equations (153) can be rewritten as the following matrix equation:

$$\begin{aligned} AU &= [\lambda_1 u^1, \lambda_2 u^2, \dots, \lambda_N u^N] \\ &= [u^1, u^2, \dots, u^N] \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & \lambda_N \end{bmatrix} \end{aligned}$$

 $(160) = U\Lambda$

where Λ is a diagonal matrix with the eigenvalues of A on the main diagonal of Λ . Now premultiply both sides of (160) by U^T and get:

(161) $U^{T}AU = U^{T}U\Lambda = \Lambda$ using (157)

We can now use the eigenvector-eigenvalue method for diagonalizing A, the matrix equation (161) above, in exactly the same way that we used the Gauss-Lagrange diagonalization method (59) above in order to determine the definiteness properties of A. For example, since $|U| \neq 0$, it can be seen that the conditions for positive definiteness of A,

(162)
$$x^{T}Ax > 0$$
 for all $x \neq 0_{N}$

are equivalent to

 $\begin{array}{ll} 0 < x^{T}Ax, & x \neq 0_{N} \\ &= y^{T}U^{T}AUy, & \text{letting } x = Uy \text{ so } y \neq 0_{N} \\ &= y^{T} \Lambda y, & \text{using (161)} \\ (163) &= \Sigma_{i=1}^{N}\lambda_{i}y_{i}^{2}. \end{array}$

Thus A is positive (negative) definite iff all of the eigenvalues of A, $\lambda_1, \lambda_2, \ldots, \lambda_N$, are positive (negative). Of course A is positive (negative) semidefinite iff all of the eigenvalues of A are nonnegative (nonpositive).

However, we established the above results under the assumption that all of the eigenvalues of A were *distinct*. In the next section, we shall relax this assumption that the eigenvalues of A are distinct, but we will still get the same results as in the above paragraph.

11. The Diagonalization of a Symmetric Matrix in the General Case

In order to derive the matrix equation (161) in the previous section without the assumption that the eigenvalues of the symmetric N by N matrix are distinct, we need two preliminary results.

(164) *The Gram-Schmidt Orthogonalization Procedure*: Let the N dimensional vectors $x^1, x^2, ..., x^K$ be linearly independent (so that $K \le N$). Then for k = 1, 2, ..., *K*; each vector x^K can be expressed as a linear combination of k *orthonormal* vectors $y^1, y^2, ..., y^K$; i.e., for k = 1, 2, ..., K:

(165) $x^k = \sum_{j=1}^k a_{kj} y^j$ where

(166)
$$y^{iT}y^j = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j. \end{cases}$$
 and

The a_{ki} in equations (165) are scalars.

Proof: For k = 1, take $y^1 = x^1/(x^{1T}x^1)^{1/2}$. Note that $x^{1T}x^1 > 0$ since if $x^1 = 0_N$, then the x^k would not be linearly independent. Thus we have $x^1 = a_{11}y^1$ where $a_{11} = (x^{1T}x^1)^{1/2}$.

For k = 2, define the vector z^2 as follows:

(167) $z^2 \equiv x^2 - (x^{2T}y^1)y^1$.

Suppose $z^2 = 0_N$. Then $x^2 = (x^{2T}y^1)y^1 = x^1(x^{2T}y^1)/(x^{1T}x^1)^{1/2}$

which would imply that x^2 is a multiple of x^1 and hence x^1 and x^2 would be linearly dependent. Thus our *supposition* is false and $z^2 \neq 0_N$.

We show that z^2 is orthogonal to y^1 :

(168)
$$y^{1T}z^2 = y^{1T}[x^2 - (x^{2T}y^1)y^1]$$

= $y^{1T}x^2 - (x^{2T}y^1)y^{1T}y^1$
= $y^{1T}x^2 - (x^{2T}y^1)$ using $y^{1T}y^1 = 1$
= 0 since $(x^{2T}y^1)^T = y^{1T}x^2$.

Now define y^2 as the following normalization of z^2 :

(169)
$$y^2 = z^2 / (z^{2T} z^2)^{1/2}$$

and so we have using (168) and (169)):

(170)
$$y^{1T}y^2 = 0$$
, $y^{2T}y^2 = 1$ and $y^{1T}y^1 = 1$.

If we substitute (169) into (167) and rearrange terms, we have:

(171)
$$x^2 = (x^{2T}y^1)y^1 = (z^{2T}z^2)^{1/2}y^2$$

= $a_{21}y^1 + a_{11}y^2$

which is (165) for k = 2.

For a general k, having defined y^1 , y^2 , . . ., y^{k-1} , define z^k as follows:

(172)
$$z^k = x^k - \sum_{j=1}^{k-1} (x^{kT}y^j)y^j$$
.

$$\begin{array}{ll} (173) \quad y^{IT}z^{k} = y^{IT}[x^{k} - \Sigma_{j=1}^{k-1}(x^{kT}y^{j})y^{j}] \\ & = y^{IT}x^{k} - \Sigma_{j=1}^{k-1}(x^{kT}y^{j})y^{IT}y^{j} \\ & = y^{IT}x^{k} - (x^{kT}y^{l})y^{IT}y^{l} \\ & = y^{IT}x^{k} - (x^{kT}y^{k}) \\ & = 0. \end{array} \quad \begin{array}{ll} \text{since } y^{IT}y^{j} = 0 & \text{if } l \neq j \\ & \text{since } y^{IT}y^{l} = 1 \\ & = 0. \end{array}$$

Thus z^k is orthogonal to y^l , y^2 , . . ., y^{k-1} . Now define y^k as the following normalization of z^k :

(174)
$$y^k = z^k / (z^{kT} z^k)^{1/2}$$
.

Now substitute (174) into (172) and we obtain:

(175)
$$\begin{aligned} x^{k} &= \sum_{j=1}^{k-1} (x^{kT}y^{j})y^{j} + (z^{kT}z^{k})^{1/2}y^{k} \\ &= \sum_{j=1}^{k-1} a_{kj}y^{j} + a_{kk} y^{k}. \end{aligned}$$
 Q.E.D.

The Gram-Schmidt orthogonalization procedure is very useful in econometrics.

We need another preliminary result about orthonormal N by N matrices U (recall this means $U^{T}U = I_{N}$).

(176) **Lemma:** Let U^1 and U^2 be two N by N orthonormal matrices. Then the product matrix $U = U^1 U^2$ is also orthonormal.

Proof:
$$U^{T}U = (U^{1}U^{2})^{T}(U^{1}U^{2}) = U^{2T}U^{1T}U^{1}U^{2} = U^{2T}I_{N}U^{2} = I_{N}.$$

Q.E.D.

Now we are ready to derive the diagonal decomposition of the N by N matrix A, $U^{T}AU = \Lambda$ where $U^{T}U = I_{N}$, assuming only that A is symmetric; i.e., we want to drop our hypothesis that we made in the previous section that the eigenvalues of A were distinct.

Let A be N by N and symmetric and let λ_1 be any eigenvalue of A with corresponding normalized eigenvector y^1 ; i.e., we have

(177) $Ay^1 = \lambda_1 y^1$ with $y^{1T}y^1 = 1$.