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To obtain an eigenvector x2 ≠ 02  for l2  = 0, define:

  
B2 ≡ A - l2I2 =

1, 1
1, 1

È 
Î 

˘ 
˚ 

- 0 1, 0
0, 1

È 
Î 

˘ 
˚ 

=
1, 1
1, 1

È 
Î 

˘ 
˚ 
.

To transform B2 into an upper triangular matrix, subtract the first row of B2 from
the second row of B2 and  we obtain U2:

  
U2 ≡

1, 1
0, 0

È 
Î 

˘ 
˚ 
.

The first zero element of U2 is   u22
2  = 0.  Hence set   x2

2  = 1 and solve

  
U2x2 =

1, 1
0, 0

È 
Î 

˘ 
˚ 

x1
2

1
È 

Î Í 
˘ 

˚ ˙ =
0
0

È 
Î 

˘ 
˚ 

for   x1
2  = -1.  Hence x 2 = [-1, 1] T is an eigenvector of A that corresponds to the

eigenvalue l2 = 0.

Note that the two eigenvectors x1 and x2 that were constructed in Examples 2
and 3 above had the property.

(139) x1Tx2 = 0.

This property turns out to be a general property of eigenvectors of a symmetric A
that correspond to distinct eigenvalues as we shall see later.

Problems:

17.  Calculate the 2 eigenvalues l1 and l2 of 
  
A ≡ 2 1

1 2
È 
Î 

˘ 
˚ 

 and calculate
eigenvectors x1 and x2 that correspond to l1  and l2.

18. Calculate the 3 eigenvalues and eigenvectors of 
  
A ≡

2 0 0
0 2 1
0 1 2

È 

Î 
Í 

˘ 

˚ 
˙ .

Hint:  Taking into account the block diagonal structure of A, you may find the
results of Problem 17 useful.

(140) Definition:  Two N dimensional vectors x and y are orthogonal or
perpendicular iff xTy = 0.

To see why xTy = 0 implies x and y are perpendicular, let x and y be two N
dimensional vectors of unit length; i.e.,
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(141) xTx =    S i=1
N xi

2  = 1 and yTy =   S i=1
N yi

2  = 1.

Now look at the vector z ≡ x - y which has the same length as the line segment s
which joins x to y.  If N = 2, we have the following picture.
         x2, y2

                segment s joining x and y
         y = (y1,y2)
        

        x = (x1, x2)
                                                                                             segment z = x - y

                                                                                                                          x1, y1
 

If x and y are perpendicular and of unit length, then by Pythagoras' Theorem in
geometry, the length of the segment s (which is equal to the length of z) is  2 ;
i.e., we have

(142) zTz = xTx + yTy = 1 + 1 = 2.

Now substitute z = x - y into (142) and simplify:

2 = (x - y)T (x - y)
   = xTx - xTy - yTx + yTy
   = 2 - xTy - yTx using (141)

(143)      = 2 - 2xTy since xTy = yTx.

Equation (143) implies that xTy = 0.  Thus if x and y are of unit length and are
perpendicular, then xTy = 0.  This argument can be extended to the case where x
≠ 0N and y ≠ 0N.  (If x and y are perpendicular, then so are x/(xTx)1/2 ≡ a and
y/(yTy)1/2 ≡ b.  Now a and b are perpendicular and of unit length and so we can
apply the above argument to conclude that aTb = 0.  But this implies xTy = 0 as
well).

(144) Theorem:  Suppose that the N eigenvalues l1, l2, . . ., lN of the N by N
symmetric matrix A are all distinct.  Let x1, x2, . . ., xN be eigenvectors
corresponding to these distinct eigenvalues.  Then xiTxj = 0 for all i ≠ j; i.e., the
eigenvectors x1, x2, . . ., xN are mutually orthogonal.
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Proof:  Let i ≠ j.  By the definition of xi ≠ 0N and li being an eigenvalue and
eigenvector of A, we have:
(145) Axi = lixi

and by the definition of lj and xj ≠ 0N being an eigenvalue and eigenvector of A,
we have:

(146) Axj = lj xj.

Premultiply both sides of (145) by xjT and obtain:

(147) xjTAxi = li xj Txi.

Now take transposes of both sides of (147) and get:

(148) lixiTxj = xiTATxj = xiTAxj

where the second equality in (148) follows from A = AT.  Premultiply both sides
of (146) by xiT and obtain:

(149) lj xiT xj = xiTAxj.

Since the right hand sides of (148) and (149) are equal, so are the left hand sides,
so we obtain:

(150) li xiTxj = lj xiTxj or

(151) (li - lj)xiT xj = 0.

Since li ≠ lj by assumption, (151) implies that xiTxj = 0; i.e., xi is orthogonal to xj.
Q.E.D.

10. The Diagonalization of a Symmetric Matrix by an Orthonormal
Transformation

Suppose that A is an N by N symmetric matrix with distinct eigenvalues
l1, l2, . . ., lN with corresponding nonzero eigenvectors x1, x2, . ., xN.  (We will
deal with the case where the eigenvalues are not necessarily distinct later in this
section).  We normalize the eigenvectors xi ≠ 0N so that they are of unit length; i.e.,
for i = 1, 2, . . ., N, define the normalized eigenvector ui by

(152) ui = xi/(xiTxi)1/2; i = 1, 2, . . ., N.
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It can be seen that since Axi = li xi for i = 1, . . ., N, we also have:

(153) Aui = liui; i = 1, 2, . . ., N,

and the ui also satisfy:

(154) uiTui = [xi/(xiTxi)1/2]T [xi/(xiTxi)1/2]
          = xiTxi/(xiTxi) 1/2 + 1/2

          = 1 for i = 1, . . ., N.

From Theorem (144), we have xiTxj = 0 if i ≠ j.  This implies that the ui have the
same orthogonality properties; i.e., we have:

(155) uiTuj = 0 if i ≠ j.

Define the N by N matrix U of the normalized eigenvectors of A by:

(156) U ≡ [u1, u2, . . ., uN].

Using (154) and (155), it can be seen that

(157) UTU = IN.

But (157) tells us that UT is a left inverse (and hence is an inverse) for U; i.e.,

(158) U-1 = UT.

Taking determinants of both sides of (157) yields:

(158) 1 = |IN| = |UTU| = |UT||U| = |U|2, or

(159) |U| = +1 or -1.

A square matrix U that satisfies (157) is called an orthonormal matrix, and (159)
shows us that its determinant equals +1 or -1.

Return to the N eigenvalue, normalized eigenvector equations (153).  Using
definition (156), it can be seen that the N equations (153) can be rewritten as the
following matrix equation:

AU = [l1u1, l2u2, . . ., lNuN]

       = [u1, u2, . . ., uN] 

  

l1 0 . . . 0
0 l2 . . . 0
:. :. :.
0 0 . . . lN

È 

Î 

Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 
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(160)       = UL

where L is a diagonal matrix with the eigenvalues of A on the main diagonal of
L.  Now premultiply both sides of (160) by UT and get:

(161) UTAU = UTUL = L using (157)

We can now use the eigenvector-eigenvalue method for diagonalizing A, the
matrix equation (161) above, in exactly the same way that we used the Gauss-
Lagrange diagonalization method (59) above in order to determine the
definiteness properties of A.  For example, since |U|≠ 0, it can be seen that the
conditions for positive definiteness of A,

(162) xTAx > 0 for all x ≠ 0N

are equivalent to

0 < xTAx, x ≠ 0N
   = yTUTAUy, letting x =Uy so y ≠ 0N
   = yT  Ly, using (161)

(163)    =   S i=1
N li  y i

2.

Thus A is positive (negative) definite iff all of the eigenvalues of A, l1, l2, . . ., lN,
are positive (negative).  Of course A is positive (negative) semidefinite iff all of
the eigenvalues of A are nonnegative (nonpositive).

However, we established the above results under the assumption that all of the
eigenvalues of A were distinct.  In the next section, we shall relax this assumption
that the eigenvalues of A are distinct, but we will still get the same results as in
the above paragraph.

11. The Diagonalization of a Symmetric Matrix in the General Case

In order to derive the matrix equation (161) in the previous section without the
assumption that the eigenvalues of the symmetric N by N matrix are distinct, we
need two preliminary results.

(164) The Gram-Schmidt Orthogonalization Procedure:  Let the N dimensional
vectors x1, x2, . . ., xK be linearly independent (so that K ≤ N).  Then for k = 1, 2, . .
.,K; each vector xK can be expressed as a linear combination of k orthonormal
vectors y1, y2, . . ., yK; i.e., for k = 1, 2, . . .,K:

(165) xk =   S j=1
k  akjyj where
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(166) yiTyj = 
  

1 if i = j and
0 if i ≠ j.

Ï 
Ì 
Ó 

The akj in equations (165) are scalars.

Proof:  For k = 1, take y1 ≡ x1/(x1Tx1)1/2.  Note that x1Tx1 > 0 since if x1 = 0N, then
the xk would not be linearly independent.  Thus we have x1 = a11y1 where a11 ≡
(x1Tx1)1/2.

For k = 2, define the vector z2 as follows:

(167) z2 ≡ x2 - (x2Ty1)y1.

Suppose z2 = 0N.  Then x2 = (x2Ty1)y1 = x1(x2Ty1)/(x1Tx1)1/2

which would imply that x2 is a multiple of x1 and hence x1 and x2 would be
linearly dependent.  Thus our supposition is false and z2 ≠ 0N.

We show that z2 is orthogonal to y1:

(168) y1Tz2 = y1T[x2 - (x2Ty1)y1]
           = y1Tx2 - (x2Ty1)y1Ty1
           = y1Tx2 - (x2Ty1) using y1Ty1 = 1
           = 0 since (x2Ty1)T = y1Tx2.

Now define y2 as the following normalization of z2:

(169) y2 ≡ z2/(z2Tz2)1/2

and so we have using (168) and (169)):

(170) y1Ty2 = 0, y2Ty2 = 1 and y1Ty1 = 1.

If we substitute (169) into (167) and rearrange terms, we have:

(171) x2 = (x2Ty1)y1 = (z2Tz2)1/2y2
     ≡ a21y1 + a11 y2

which is (165) for k = 2.

For a general k, having defined y1, y2, . . ., yk-1, define zk as follows:

(172) zk ≡ xk -  S j=1
k -1(xkTyj)yj.
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If zk = 0N, then we can show that x1, x2, . . ., xk are linearly dependent which
contradicts our assumption.  Thus zk ≠ 0N.  It is also straightforward to show that
for l = 1, 2, . . ., k-1:

(173) ylTzk = ylT[xk -   S j=1
k -1(xkTyj)yj]

          = ylTxk -   S j=1
k -1(xkTyj)ylTyj

          = ylTxk - (xkTyl)ylTyl since ylTyj = 0 if l ≠ j
          = ylTxk - (xkTyk) since ylTyl = 1
          = 0.

Thus zk is orthogonal to yl, y2, . . ., yk-1.  Now define yk as the following
normalization of zk:

(174) yk ≡ zk/(zkTzk)1/2.

Now substitute (174) into (172) and we obtain:

(175) xk =   S j=1
k -1(xkTyj)yj + (zkTzk)1/2yk

     ≡  S j=1
k -1akjyj + akk yk.

Q.E.D.

The Gram-Schmidt orthogonalization procedure is very useful in econometrics.

We need another preliminary result about orthonormal N by N matrices U (recall
this means UTU = IN).

(176) Lemma:  Let U1 and U2 be two N by N orthonormal matrices.  Then the
product matrix U ≡ U1U2 is also orthonormal.

Proof:  UTU = (U1U2)T(U1U2) = U2TU1TU1U2 = U2TINU2 = IN.
Q.E.D.

Now we are ready to derive the diagonal decomposition of the N by N matrix A,
UTAU = L where UTU = IN, assuming only that A is symmetric; i.e., we want to
drop our hypothesis that we made in the previous section that the eigenvalues of
A were distinct.

Let A be N by N and symmetric and let l1 be any eigenvalue of A with
corresponding normalized eigenvector y1; i.e., we have

(177) Ay1 = l1y1 with y1Ty1 = 1.


