41

Let the system of N dimensional unit vectors be ey, €y, . . ., eN. Now consider the
N vectors y1, e1, €, . . ., eN-1. Assume that this system of vectors is linearly
independent (if this is not the case, then this will show up in the Gram-Schmidt
procedure -- one of the zK's will be Oy - then just drop the corresponding ex-1 and
include ey in the set of linearly independent vectors). Use the Gram-Schmidt
orthogonalization procedure to construct a system of N orthonormal vectors
with the eigenvector yl being the first of these vectors. Denote the N

orthonormal vectors as [y1, y2, . . ., yN] = U, a N by N matrix with U] Uj =1In.
Using Ayl = A1yl, compute.

[y1T]
| 2T |
178) UTAU; =", |AlyY 2. yN]
NT
]
[y1T]
|Y2T | 1 2 N
=", |A[h1y ,Ay©, .., Ay ] using Ayl =)yl
NT
]
D\l, leAyz, . leAyN]
lo, y2Tay2, ..., y2TayN| .
= | :’ y Ay pY Ay |sincey]Ty1:0forj:2,3,...,N
{0, yNTAyZ, ey yNTAyNJ

P\.l, 0, e 0 ]
| ; |
{ 0, yNTAyZ, e yNTAyNJ

b1, 0 s O]
_ |
| : Ay |
K |

where Aj is an N-1 by N-1 symmetric matrix.
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Now let Ay be an eigenvalue of Ay (note that Ag =A 7)and letx 2 Dbe the
corresponding N-1 dimensional eigenvector, i.e., Apx2 = Ax2 and x2Tx2 = 1.
Again use the Gram-Schdmidt orthogonalization procedure to construct a
system of N-1 orthonormal N-1 dimensional vectors with x2 being the first such
vector; let the system of orthonormal vectors be denoted by [x2,x3, . . ., xN]. Then
we may repeat the analysis given on page XXX to show that:

[x2x3, ..., xNJTAs[x2,x3, . .., xN]

[Ap 0...0]

0
(179) = I . I where A3z is an (N-2) x (N-2) matrix
|0 Az |
Now define the N dimensional orthonormal matrix Uz by

0,...,0

2
X,

N

1 |
_10 |
|: 2
]

0

Combining (178) with (179) yields the following;:

(180) U,

(U1Up)TA(U1Up) = Ua (UT AUDU,

A1 0...0]
0

T| |
=U . U
21t Ay | 2

K |

MO .0

0

[ 0..
R
[0 0 Aj

Evidently we can continue this process until we have reduced A down to a
diagonal matrix by means of a product of N orthogonal matrices.

M 0...0
|O }\.2 0

]
. :|
00 |

(181) U=UjU;...Uy;ie., UTAU= where UTU =1y

Q.ED.
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(182) Definition: A projection matrix M is a square matrix with
(1) M = MT (i.e., M is a symmetric); and

i) M2=MeM=M.

(Sometimes projection matrices are called idempotent matrices).

(183) Lemma: The eigenvalues of a projection matrix are either equal to zero or
unity.

Proof: Since M is a square, symmetric matrix, by (181) there exists an
orthonormal matrix U such that

[M 0]
(184) UTMU =] : |
[o xNJ

a diagonal matrix with the eigenvalues of M down the main diagonal.

Therefore,
M 0...0]
|0 Ap...0 T T -
g = UTMU = UT™ « MU by (182) (i)
[0 0...hy
=UTMUUTMU
M 0[O, .
=10 A [0 A [using (184) twice]
since UT is an inverse for U
3  0...01
o 230l
_|§ |
0 0..2%
Therefore, A= 7»21 for i=1,2,...,N
— 33 -X=0

— \; = either O or 1.
Q.ED.

Problem 19:
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Let X be an N by K matrix where K < N and the columns of X are linearly
independent so that (XTX)1 exists.

(1) Show that M7 = X(XTX)-1 XT and
M, = In - X(XTX)1 XT

are projection matrices. (These matrices occur in the study of the linear model in
econometrics).

(ii)  Let U be the orthonormal matrix which diagonalizes My; i.e,, UTM U = Ag
a diagonal matrix. Show that the same U also diagonalizes M into another
diagonal matrix Ay and that A1 + Ay = IN.

Geometrically speaking, an orthonormal transformation can be interpreted as a
rotation of the system of co-ordinate axes. This geometric interpretation rests on
the fact that an orthonormal transformation leaves the distance between two
points x and y unchanged and also the angle between the two vectors is left
unchanged in the new co-ordinate system.

(185) Definition: The distance between two N dimensional vectors x and y is
defined as D(x, y) = [(x-y)T (x-y)]1/2

(186) Definition: The angle which two vectors x and y make with each other is

obtained by cos © = XTy /(XTX)l/Z(yTy)l/2

(187) Lemma: An orthonormal transformation U leaves distances and angles
between two points unchanged.
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Proof: D(Ux; Uy) = [(Ux - Uy)T(Ux - Uy)]1/2
= [(x-y)TUTU(x-y)] 1/2
= [Oey)TIN (x-y)] /2
=D(xy)

The angle between the points Ux and Uy is given by:

cos O = (UX)T(Uy) /(XTUTUx)l/2
=xTUTUy / (xTx)1 /2 (yTy)! /2
= xTy/(xTx)1/2 (yT)l/z

which defines the angle between x and y.

QED.
Finally, let us return to the problem of giving a geometric interpretation to the
determinant of a square matrix A. Let us write A and N column vectors:
A=[x1,x2 ..., xN]

We wish to show that | Al = = volume of parallelepiped generated by vectors
xL .. xN,

Consider the case N = 2.

X'+ x°
t, u'
Recall the Gram-Schmidt Orthogonalization procedure (164).
x! = t1qul where ul is a vector of unit length
x2 = toul + tpou? u? is a vector of unit length perpendicular to ul
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Since the area of the parallelogram is equal to base times height, we have area =
t11 @ t2o.

For the case of general N we have a similar result:

[t11 ti2 tHN ]
0 txn 3N

(188) A=[x1,x2 ..., xN]J=[ul,u? ..., ulN] | : |
0 0 NN

1

orthogonal vectors
all zeros below main diagonal.

- the length of the vector x1 is t11,

- the area of the parallelogram generated by x! and x2 in the x1, x2 plane is tjg »
t22,

- the area of the parallelepiped generated by x1, x2, and x3 in x1, x2, x3 space is t11

* tope t33 (or the absolute value of this number if it turns out to be negative).
Thus

Mty tia ... tN]
= volume of parallelipied = + t11t20 ... tNN = | 0 ;o t2:N|
0 0 ... tan
==+ [Tl Ul since |Ul == by lemma (159)
==+ |UT| since ITl « Ul =1Ul « ITI =|UTI
=z [Al by (188).

Q.ED.

12.  Additional Useful Properties of Square Invertible Matrices
The following three results are very useful in applications.

(189) Lemma: If A = AT and A-lexists, then A1 = (A1)T; i.e, if A is symmetric
and Al exists, then A-lis also symmetric.

Proof: We have, using the associative law for matrix multiplication:

(190) A-TAADT = [ATA(A-DT = Iy (A-D)T = (AT and
ATAADT = AT[AADT]
= A1AT (A-DT] using A = AT
= A1ATA]T using CTBT=(BC)T
(191) — AL =AlIN=AL
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Equating (190) and (191) yields the desired result.
Q.E.D.

(192) Lemma: If A is positive definite, then so is Al

Proof: Since A is positive definite, we have | A| >0 and hence A-lexists. Let

(193) y=0n and define x by
(194) x=Aly.

Suppose the x defined by (194) were ON. Then

Aly =0N or
y=A0N=0N

which contradicts (193). Thus our supposition is false and we must have x = On.
Hence, since A is positive definite, we have:

0<xTAx
= (Aly)TA(Aly) using (194), x = A-ly
— yT(A—l)TA A'ly
~yT(A )Ty
(195) =yTAly using Lemma (189).

(193) and (195) show that A-1is positive definite.
QED.

(196) Corollary: If A is negative definite, then so is A™.

Proof: Adapt the above proof.

(197) Lemma: Suppose A is N by N and Al exists. Then (A-1)T = (AT)1; je,
we can interchange the order of transposition and inversion and obtain the same
result.

Proof: Again use the associative law for matrix multiplication:

(198) (ADT AT (AT)1 = (A-DT[AT (AT)1] = (A DT IN=(ADT and
(A—l)T AT (AT)—l — [(A-I)T AT] (AT)—l

=[A A 1]T (AT)1 using CTBT = (BO)T
= IN(AT)

(199) = (AT)-1,

Equating (198) and (199) yields the desired result. Q.E.D.
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