Let the system of N dimensional unit vectors be e_1, e_2, \ldots, e_N . Now consider the N vectors y^1 , $e_1, e_2, \ldots, e_{N-1}$. Assume that this system of vectors is linearly independent (if this is not the case, then this will show up in the Gram-Schmidt procedure -- one of the z^k 's will be 0_N - then just drop the corresponding e_{k-1} and include e_N in the set of linearly independent vectors). Use the Gram-Schmidt orthogonalization procedure to construct a system of N orthonormal vectors with the eigenvector y^1 being the first of these vectors. Denote the N orthonormal vectors as $[y^1, y^2, \ldots, y^N] \equiv U_1$, a N by N matrix with $U_1^T U_1 = I_N$. Using $Ay^1 = \lambda_1 y^1$, compute.

where A₂ is an N-1 by N-1 symmetric matrix.

Now let λ_2 be an eigenvalue of A_2 (note that $A_2^T = A_2$) and let x^{-2} be the corresponding N-1 dimensional eigenvector, i.e., $A_2x^2 = \lambda_2x^2$ and $x^{2T}x^2 = 1$. Again use the Gram-Schdmidt orthogonalization procedure to construct a system of N-1 orthonormal N-1 dimensional vectors with x^2 being the first such vector; let the system of orthonormal vectors be denoted by $[x^2, x^3, \ldots, x^N]$. Then we may repeat the analysis given on page XXX to show that:

$$[x^{2}, x^{3}, \dots, x^{N}]^{T} A_{2}[x^{2}, x^{3}, \dots, x^{N}]$$

$$(179) = \begin{bmatrix} \lambda_{2} & 0 \dots 0 \\ 0 & \\ \vdots \\ 0 & A_{3} \end{bmatrix} \text{ where } A_{3} \text{ is an } (N-2) x (N-2) \text{ matrix}$$

Now define the N dimensional orthonormal matrix U₂ by

(180) $U_2 = \begin{bmatrix} 1 & 0, \dots, 0 \\ 0 & \\ \vdots & x^2, \dots, x^N \end{bmatrix}$

Combining (178) with (179) yields the following:

$$(U_{1}U_{2})^{T}A(U_{1}U_{2}) = U_{2}^{T}(U_{1}^{T}AU_{1})U_{2}$$

$$= U_{2}^{T} \begin{vmatrix} \lambda_{1} & 0 \dots & 0 \\ 0 & \\ \vdots & A_{2} \\ 0 & \\ \end{vmatrix} U_{2}$$

$$= \begin{vmatrix} \lambda_{1} & 0 & 0 \dots & 0 \\ 0 & \lambda_{2} & 0 \dots & 0 \\ \vdots & \vdots & \\ 0 & 0 & A_{3} \end{vmatrix}$$

Evidently we can continue this process until we have reduced A down to a diagonal matrix by means of a product of N orthogonal matrices.

(181)
$$\mathbf{U} = \mathbf{U}_1 \mathbf{U}_2 \dots \mathbf{U}_N$$
; i.e., $\mathbf{U}^T \mathbf{A} \mathbf{U} = \begin{bmatrix} \lambda_1 & 0 \dots 0 \\ 0 & \lambda_2 & 0 \\ \vdots & \vdots \\ 0 & 0 & \lambda_N \end{bmatrix}$ where $\mathbf{U}^T \mathbf{U} = \mathbf{I}_N$.
Q.E.D.

(182) **Definition:** A *projection* matrix M is a square matrix with

(i) $M \neq M^T$ (i.e., M is a symmetric); and

(ii)
$$M^2 = M \bullet M = M$$
.

(Sometimes projection matrices are called *idempotent* matrices).

(183) **Lemma:** The eigenvalues of a projection matrix are either equal to zero or unity.

Proof: Since M is a square, symmetric matrix, by (181) there exists an orthonormal matrix U such that

(184)
$$\mathbf{U}^{\mathrm{T}}\mathbf{M}\mathbf{U} = \begin{bmatrix} \lambda_{1} & \dots & 0 \\ \vdots & & \\ 0 & & \lambda_{\mathrm{N}} \end{bmatrix}$$

a diagonal matrix with the eigenvalues of M down the main diagonal.

Therefore,

$$\begin{bmatrix} \lambda_1 & 0 \dots 0 \\ 0 & \lambda_2 \dots 0 \\ \vdots & \\ 0 & 0 \dots \lambda_N \end{bmatrix} = \mathbf{U}^{\mathrm{T}} \mathbf{M} \mathbf{U} = \mathbf{U}^{\mathrm{T}} \mathbf{M} \mathbf{U} \qquad \text{by (182) (ii)}$$
$$= \mathbf{U}^{\mathrm{T}} \mathbf{M} \mathbf{U} \mathbf{U}^{\mathrm{T}} \mathbf{M} \mathbf{U}$$
$$= \begin{bmatrix} \lambda_1 \dots 0 \\ 0 \dots \lambda_N \end{bmatrix} \begin{bmatrix} \lambda_1 \dots 0 \\ 0 \dots \lambda_N \end{bmatrix} \begin{bmatrix} u \text{sing (184) twice} \end{bmatrix}$$

since $U^{T} \mbox{ is an inverse for } U$

$$\begin{bmatrix} \lambda_1^2 & 0 \dots 0 \\ 0 & \lambda_2^2 \dots 0 \\ \vdots & \\ 0 & 0 \dots \lambda_N^2 \end{bmatrix}$$

 $\begin{array}{ll} \text{Therefore,} & \lambda_i = \lambda_i^2 & \text{for} & i = 1, 2, \dots, N \\ & \rightarrow \lambda_i^2 - \lambda_i = 0 \\ & \rightarrow & \lambda_i = \text{either 0 or 1.} \end{array}$

Q.E.D.

Problem 19:

Let X be an N by K matrix where $K \le N$ and the columns of X are linearly independent so that $(X^TX)^{-1}$ exists.

(i) Show that $M_1 = X(X^TX)^{-1} X^T$ and $M_2 = I_N - X(X^TX)^{-1} X^T$

are projection matrices. (These matrices occur in the study of the linear model in econometrics).

(ii) Let U be the orthonormal matrix which diagonalizes M_1 ; i.e., $U^TM_1U = \Delta_1$ a diagonal matrix. Show that the same U also diagonalizes M_2 into another diagonal matrix Δ_2 and that $\Delta_1 + \Delta_2 = I_N$.

Geometrically speaking, an orthonormal transformation can be interpreted as a rotation of the system of co-ordinate axes. This geometric interpretation rests on the fact that an orthonormal transformation leaves the distance between two points x and y unchanged and also the angle between the two vectors is left unchanged in the new co-ordinate system.

(185) **Definition:** The distance between two N dimensional vectors x and y is defined as $D(x, y) = [(x-y)^T (x-y)]^{1/2}$

(186) **Definition:** The *angle* which two vectors x and y make with each other is obtained by $\cos \Theta = x^T y / (x^T x)^{1/2} (y^T y)^{1/2}$

(187) **Lemma:** An orthonormal transformation U leaves distances and angles between two points unchanged.

44

Proof:
$$D(Ux; Uy) = [(Ux - Uy)^T(Ux - Uy)]^{1/2}$$

= $[(x-y)^TU^TU(x-y)]^{1/2}$
= $[(x-y)^TI_N (x-y)]^{1/2}$
= $D(x;y)$

The angle between the points Ux and Uy is given by:

$$\cos \Theta = (Ux)^{T}(Uy) / (x^{T}U^{T}Ux)^{1/2}$$

= x^{T}U^{T}Uy / (x^{T}x)^{1/2} (y^{T}y)^{1/2}
= x^{T}y / (x^{T}x)^{1/2} (y^{T})^{1/2}

which defines the angle between x and y.

Q.E.D.

Finally, let us return to the problem of giving a geometric interpretation to the determinant of a square matrix A. Let us write A and N column vectors:

$$A = [x^1, x^2, \dots, x^N]$$

We wish to show that $|A| = \pm$ volume of parallelepiped generated by vectors x^1, \ldots, x^N .

Consider the case N = 2.

Recall the Gram-Schmidt Orthogonalization procedure (164).

$x^1 = t_{11}u^1$	where u ¹ is a vector of unit length
$x^2 = t_{12}u^1 + t_{22}u^2$	u ² is a vector of unit length perpendicular to u ¹

Since the area of the parallelogram is equal to base times height, we have area = $t_{11} \cdot t_{22}$.

For the case of general N we have a similar result:

(188)
$$A^{*}[x^{1}, x^{2}, ..., x^{N}] = [u^{1}, u^{2}, ..., u^{N}] \begin{bmatrix} t_{11} & t_{12} & ... & t_{1N} \\ 0 & t_{22} & ... & t_{2N} \\ \vdots & \vdots & & \\ 0 & 0 & & t_{NN} \end{bmatrix}$$

orthogonal vectors \uparrow
all zeros below main diagonal.

- the length of the vector x^1 is t_{11} ,

- the area of the parallelogram generated by x^1 and x^2 in the x_1 , x_2 plane is $t_{11} \bullet t_{22}$,

the area of the parallelepiped generated by x¹, x², and x³ in x₁, x₂, x₃ space is t₁₁
t₂₂• t₃₃ (or the absolute value of this number if it turns out to be negative). Thus

12. Additional Useful Properties of Square Invertible Matrices

The following three results are very useful in applications.

(189) **Lemma:** If $A = A^T$ and A^{-1} exists, then $A^{-1} = (A^{-1})^T$; i.e., if A is symmetric and A^{-1} exists, then A^{-1} is also symmetric.

Proof: We have, using the associative law for matrix multiplication:

(190)
$$A^{-1} A(A^{-1})^{T} = [A^{-1}A](A^{-1})^{T} = I_{N} (A^{-1})^{T} = (A^{-1})^{T}$$
 and
 $A^{-1}A(A^{-1})^{T} = A^{-1}[A(A^{-1})^{T}]$
 $= A^{-1}[A^{T} (A^{-1})^{T}]$ using $A = A^{T}$
 $= A^{-1}[A^{-1}A]^{T}$ using $C^{T}B^{T} = (BC)^{T}$
(191) $= A^{-1}I_{N}^{T} = A^{-1} I_{N} = A^{-1}$.

Equating (190) and (191) yields the desired result.

(192) **Lemma:** If A is positive definite, then so is A⁻¹.

Proof: Since A is positive definite, we have |A| > 0 and hence A^{-1} exists. Let

(193) $y \neq 0_N$ and define x by (194) $x \equiv A^{-1} y$.

Suppose the x defined by (194) were 0_N . Then

$$\begin{array}{ll} A^{-1}y=0_N & \text{ or } \\ y=A\ 0_N=0_N \end{array}$$

which contradicts (193). Thus our *supposition* is false and we must have $x \neq 0_N$. Hence, since A is positive definite, we have:

$$\begin{array}{ll} 0 < x^{T}Ax \\ &= (A^{-1}y)^{T}A(A^{-1}y) \\ &= y^{T}(A^{-1})^{T}A A^{-1}y \\ &= y^{T}(A^{-1})^{T}y \\ (195) &= y^{T} A^{-1}y \end{array} \quad using Lemma (189). \end{array}$$

(193) and (195) show that A^{-1} is positive definite.

Q.E.D.

(196) **Corollary:** If A is negative definite, then so is A^{-1} .

Proof: Adapt the above proof.

(197) **Lemma:** Suppose A is N by N and A⁻¹ exists. Then $(A^{-1})^T = (A^T)^{-1}$; i.e., we can interchange the order of transposition and inversion and obtain the same result.

Proof: Again use the associative law for matrix multiplication:

(198)
$$(A^{-1})^T A^T (A^T)^{-1} = (A^{-1})^T [A^T (A^T)^{-1}] = (A^{-1})^T I_N = (A^{-1})^T$$
 and
 $(A^{-1})^T A^T (A^T)^{-1} = [(A^{-1})^T A^T] (A^T)^{-1}$
 $= [A A^{-1}]^T (A^T)^{-1}$ using $C^T B^T = (BC)^T$
 $= I_N^T (A^T)^{-1}$
(199) $= (A^T)^{-1}$.

Equating (198) and (199) yields the desired result.

Q.E.D.

Q.E.D.