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Let the system of N dimensional unit vectors be e1, e2, . . ., eN.  Now consider the
N vectors y1, e1, e2, . . ., eN-1.  Assume that this system of vectors is linearly
independent (if this is not the case, then this will show up in the Gram-Schmidt
procedure -- one of the zk's will be 0N - then just drop the corresponding ek-1 and
include eN in the set of linearly independent vectors).  Use the Gram-Schmidt
orthogonalization procedure to construct a system of N orthonormal vectors
with the eigenvector y1 being the first of these vectors.  Denote the N
orthonormal vectors as [y1, y2, . . ., yN] ≡ U1, a N by N matrix with    U1

T U1 = IN.
Using Ay1 = l1y1, compute.

(178)

  

U1
TAU1 =

y1T

y2T

:.
yNT

È 

Î 

Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 

A[y1, y2 , . . ., yN ]

   

  

=

y1T

y2T

:.
yNT

È 

Î 

Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 

A[l1y1, Ay2 , . . ., AyN ] using Ay1 = l1y1

   = 

  

l1, y1TAy2 , . . ., y1TAyN

0, y2TAy2, . . ., y2TAyN

:.
0, yNTAy2 , . . ., yNTAyN

È 

Î 

Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 

 since yjTy1 = 0 for j = 2,3, . . .,N

   = 

  

l1, 0, . . ., 0
0, y2TAy2, . . ., y2TAyN

:. :.
0, yNTAy2 , . . ., yNTAyN

È 

Î 

Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 

        since (  U1
T AU1)T =   U1

T ATU1 =   U1
T AU1 is symmetric

    = 

  

l1, 0, . . ., 0
0
:. A2
0

È 

Î 

Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 

where A2 is an N-1 by N-1 symmetric matrix.
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Now let l2 be an eigenvalue of A2 (note that   A2
T  = A 2) and let x 2 be the

corresponding N-1 dimensional eigenvector, i.e., A2x2 = l2x2 and x2Tx2 = 1.
Again use the Gram-Schdmidt orthogonalization procedure to construct a
system of N-1 orthonormal N-1 dimensional vectors with x2 being the first such
vector; let the system of orthonormal vectors be denoted by [x2,x3, . . ., xN].  Then
we may repeat the analysis given on page XXX to show that:

    [x2,x3, . . ., xN]TA2[x2,x3, . . ., xN]

(179)      

  

=

l2 0 . . . 0
0
:.
0 A3

È 

Î 

Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 

 where A3 is an (N-2) x (N-2) matrix

Now define the N dimensional orthonormal matrix U2 by

(180)

  

U2 =

1 0, . . ., 0
0
:. x2, . . ., xN

0

È 

Î 

Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 

Combining (178) with (179) yields the following:

(U1U2)TA(U1U2) =    U2
T (  U1

T AU1)U2

                   

  

= U2
T

l1 0 . . . 0
0
:. A2
0

È 

Î 

Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 

 U2

       

  

=

l1 0 0 . . . 0
0 l2 0 . . . 0
:. :.
0 0 A3

È 

Î 

Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 

Evidently we can continue this process until we have reduced A down to a
diagonal matrix by means of a product of N orthogonal matrices.

(181) U = U1U2 . . . UN; i.e., UTAU = 

  

l1 0 . . . 0
0 l2 0
:. :.
0 0 lN

È 

Î 

Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 

 where UTU = IN.

Q.E.D.
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(182) Definition:  A projection matrix M is a square matrix with
(i)  M ≠ MT (i.e., M is a symmetric); and
(ii) M2 = M • M = M.
(Sometimes projection matrices are called idempotent matrices).

(183) Lemma:  The eigenvalues of a projection matrix are either equal to zero or
unity.

Proof:  Since M is a square, symmetric matrix, by (181) there exists an
orthonormal matrix U such that

(184)

  

UTMU =

l1 . . . 0
:.
0 l N

È 

Î 

Í 
Í 

˘ 

˚ 

˙ 
˙ 

a diagonal matrix with the eigenvalues of M down the main diagonal.

Therefore,

  

l1 0 . . . 0
0 l2 . . . 0
:.
0 0 . . . l N

È 

Î 

Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 

 = UTMU = UTM • MU by (182) (ii)

        = UTMUUTMU

                    = 
  

l1 . . . 0
0 . . . lN

È 
Î 

˘ 
˚ 

l1 . . . 0
0 . . . l N

È 
Î 

˘ 
˚ 

 [using (184) twice]

since UT is an inverse for U

        = 

  

l1
2 0 . . . 0

0 l2
2 . . . 0

:.
0 0 . . . l N

2

È 

Î 

Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 

Therefore, li =   l i
2 for i = 1, 2, . . . , N

Æ   l i
2  - li = 0

Æ         li = either 0 or 1.
Q.E.D.

Problem 19:
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Let X be an N by K matrix where K ≤ N and the columns of X are linearly
independent so that (XTX)-1 exists.

(i) Show that M1 ≡ X(XTX)-1 XT and
       M2 ≡ IN - X(XTX)-1 XT

are projection matrices.  (These matrices occur in the study of the linear model in
econometrics).

(ii) Let U be the orthonormal matrix which diagonalizes M1; i.e., UTM1U = D1
a diagonal matrix.  Show that the same U also diagonalizes M2 into another
diagonal matrix D2 and that D1  + D2 = IN.

Geometrically speaking, an orthonormal transformation can be interpreted as a
rotation of the system of co-ordinate axes.  This geometric interpretation rests on
the fact that an orthonormal transformation leaves the distance between two
points x and y unchanged and also the angle between the two vectors is left
unchanged in the new co-ordinate system.

(185) Definition:  The distance between two N dimensional vectors x and y is
defined as D(x, y) ≡ [(x-y)T (x-y)]1/2

(186) Definition:  The angle which two vectors x and y make with each other is
obtained by   cos Q ≡ xTy/(xTx)1/2(yTy)1/2

y

      x

      Q

(187) Lemma:  An orthonormal transformation U leaves distances and angles
between two points unchanged.
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Proof: D(Ux; Uy) ≡ [(Ux - Uy)T(Ux - Uy)]1/2
       = [(x-y)TUTU(x-y)] 1/2
       = [(x-y)TIN (x-y)]1/2
       = D(x;y)

The angle between the points Ux and Uy is given by:

  cos Q ≡ (Ux)T(Uy)/(xTUTUx)1/2

              =xTUTUy/(xTx)1/2 (yTy)1/2
                       = xTy/(xTx)1/2 (yT)1/2

which defines the angle between x and y.
Q.E.D.

Finally, let us return to the problem of giving a geometric interpretation to the
determinant of a square matrix A.  Let us write A and N column vectors:

A = [x1, x2, . . ., xN]

We wish to show that |A| = ±  volume of parallelepiped generated by vectors
x1, . . ., xN.

Consider the case N = 2.

                                                                                                                         x1 + x2

                                       x2

t22 u2

                                                                                                   x1 = t11 u1

                                                                                                  

                                              t12 u1

Recall the Gram-Schmidt Orthogonalization procedure (164).

x1 = t11u1 where u1 is a vector of unit length
x2 = t12u1 + t22u2 u2 is a vector of unit length perpendicular to u1
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Since the area of the parallelogram is equal to base times height, we have area =
t11 • t22.

For the case of general N we have a similar result:

(188) A%≡ [x1, x2, . . ., xN] = [u1, u2, . . ., uN] 

  

t11 t12 . . . t1N
0 t22 . . . t2N
:. :.
0 0 tNN

È 

Î 

Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 

↑
       orthogonal vectors ↑
       all zeros below main diagonal.

- the length of the vector x1 is t11,
- the area of the parallelogram generated by x1 and x2 in the x1, x2 plane is t11 •
t22,
- the area of the parallelepiped generated by x1, x2, and x3 in x1, x2, x3 space is t11
• t22• t33 (or the absolute value of this number if it turns out to be negative).
Thus

±  volume of parallelipied = ±  t11t22 . . . tNN = 

  

t11 t12 . . . t1N
0 t22 . . . t2N

:.
0 0 . . . tNN

È 

Î 

Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 

          = ±  |T| |U| since |U| = ±  by lemma (159)
          = ±  |UT| since |T| • |U| = |U| • |T| = |UT|

          = ±  |A| by (188).
Q.E.D.

12. Additional Useful Properties of Square Invertible Matrices

The following three results are very useful in applications.

(189) Lemma:  If A = AT and A-1 exists, then A-1 = (A-1)T; i.e., if A is symmetric
and A-1 exists, then A-1 is also symmetric.

Proof:  We have, using the associative law for matrix multiplication:

(190) A-1 A(A-1)T = [A-1A](A-1)T = IN (A-1)T = (A-1)T and
 A-1A(A-1)T = A-1[A(A-1)T]

         = A-1[AT (A-1)T] using A = AT
         = A-1[A-1A]T using CTBT = (BC) T

(191)          = A-1  IN
T  = A-1 IN = A-1.
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Equating (190) and (191) yields the desired result.
Q.E.D.

(192) Lemma:  If A is positive definite, then so is A-1.

Proof:  Since A is positive definite, we have |A| > 0 and hence A-1 exists.  Let

(193) y ≠ 0N and define x by
(194) x ≡ A-1 y.

Suppose the x defined by (194) were 0N.  Then

A-1y = 0N or
      y = A 0N = 0N

which contradicts (193).  Thus our supposition is false and we must  have x ≠ 0N.
Hence, since A is positive definite, we have:

0 < x TAx
   = (A-1y)TA(A-1y) using (194), x = A-1y
   = yT(A-1)TA A-1y
   = yT(A-1)Ty

(195)    = yT A-1 y using Lemma (189).

(193) and (195) show that A-1 is positive definite.
Q.E.D.

(196) Corollary:  If A is negative definite, then so is A-1.

Proof:  Adapt the above proof.

(197) Lemma:  Suppose A is N by N and A-1 exists.  Then (A-1)T = (AT)-1; i.e.,
we can interchange the order of transposition and inversion and obtain the same
result.

Proof:  Again use the associative law for matrix multiplication:

(198) (A-1)T AT (AT)-1 = (A-1)T [AT (AT)-1] = (A-1)T IN = (A-1)T and
(A-1)T AT (AT)-1 = [(A-1)T AT] (AT)-1

     = [A A-1]T (AT)-1 using CTBT = (BC)T

     =   IN
T (AT)-1

(199)                  =  (AT)-1.

Equating (198) and (199) yields the desired result. Q.E.D.


