Let the system of N dimensional unit vectors be $\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots, \mathrm{e}_{\mathrm{N}}$. Now consider the N vectors $\mathrm{y}^{1}, \mathrm{e}_{1}, \mathrm{e}_{2}, \ldots, \mathrm{e}_{\mathrm{N}-1}$. Assume that this system of vectors is linearly independent (if this is not the case, then this will show up in the Gram-Schmidt procedure -- one of the $\mathrm{z}^{\mathrm{k}} \mathrm{s}$ will be 0_{N} - then just drop the corresponding $\mathrm{e}_{\mathrm{k}-1}$ and include e_{N} in the set of linearly independent vectors). Use the Gram-Schmidt orthogonalization procedure to construct a system of N orthonormal vectors with the eigenvector y^{1} being the first of these vectors. Denote the N orthonormal vectors as $\left[y^{1}, y^{2}, \ldots, y^{N}\right] \equiv \mathrm{U}_{1}$, a N by N matrix with $\mathrm{U}_{1}^{\mathrm{T}} \mathrm{U}_{1}=\mathrm{I}_{\mathrm{N}}$. Using $A y^{1}=\square_{1} y^{1}$, compute.

$$
\begin{align*}
& \begin{aligned}
& \\
& \mathrm{U}_{1}^{\mathrm{T}} \mathrm{AU}_{1}= \begin{array}{l}
\square y^{1 \mathrm{~T}} \square \\
\square \mathrm{y}^{2 \mathrm{~T}} \\
\square \\
\square \\
\\
\\
\\
\square \mathrm{D}^{\mathrm{NT}} \square_{\square}
\end{array} \quad \square^{\mathrm{A}}\left[\mathrm{y}^{1}, \mathrm{y}^{2}, \ldots, \mathrm{y}^{\mathrm{N}}\right]
\end{aligned} \tag{178}\\
& \square y^{1 T} \\
& =\stackrel{\square}{ } y^{2 T} \square \quad \square A\left[\square_{1} y^{1}, A y^{2}, \ldots, A y^{N}\right] \text { using } A y^{1}=\square_{1} y^{1} \\
& \square_{\square}^{\square}{ }^{\square}{ }_{\square}^{\square} \\
& \square_{1}, \quad y^{1 T} A y^{2}, \quad \ldots, \quad y^{1 T} A y^{N} \text { [} \\
& \begin{array}{llll}
\square_{0}, & y^{2 T} A y^{2}, & \ldots, & y^{2 T} A y \\
\square & \square & \square \text { since } y^{j T} y^{1}=0 \text { for } j=2,3, \ldots, N
\end{array} \\
& \square_{\square}^{0}, \quad y^{N T} A y^{2}, \quad \ldots, \quad y^{N T} A y^{N}{ }^{[}
\end{align*}
$$

$$
\begin{aligned}
& \text { since }\left(U_{1}^{T} A U_{1}\right)^{T}=U_{1}^{T} A^{T} U_{1}=U_{1}^{T} A U_{1} \text { is symmetric }
\end{aligned}
$$

where A_{2} is an $\mathrm{N}-1$ by $\mathrm{N}-1$ symmetric matrix.

Now let \square_{2} be an eigenvalue of A_{2} (note that $A_{2}^{T}=A A_{2}$) and let $x{ }^{2}$ be the corresponding $N-1$ dimensional eigenvector, i.e., $A_{2} x^{2}=\square_{2} x^{2}$ and $x^{2 T} x^{2}=1$. Again use the Gram-Schdmidt orthogonalization procedure to construct a system of N-1 orthonormal N-1 dimensional vectors with x^{2} being the first such vector; let the system of orthonormal vectors be denoted by $\left[x^{2}, x^{3}, \ldots, x^{N}\right]$. Then we may repeat the analysis given on page $X X X$ to show that:

$$
\left[x^{2}, x^{3}, \ldots, x^{N}\right]^{T} A_{2}\left[x^{2}, x^{3}, \ldots, x^{N}\right]
$$

$$
\begin{array}{rrrr}
\square \square_{2} & 0 \ldots 0 \tag{179}\\
\square^{0} & & \square \\
\vdots & & \square \\
\square & A_{3} & \square
\end{array} \text { where } A_{3} \text { is an }(\mathrm{N}-2) \times(\mathrm{N}-2) \text { matrix }
$$

Now define the N dimensional orthonormal matrix U_{2} by

Combining (178) with (179) yields the following:

$$
\begin{aligned}
& \left(\mathrm{U}_{1} \mathrm{U}_{2}\right)^{\mathrm{T}} \mathrm{~A}\left(\mathrm{U}_{1} \mathrm{U}_{2}\right)=\mathrm{U}_{2}^{\mathrm{T}}\left(\mathrm{U}_{1}^{\mathrm{T}} A \mathrm{U}_{1}\right) \mathrm{U}_{2}
\end{aligned}
$$

Evidently we can continue this process until we have reduced A down to a diagonal matrix by means of a product of N orthogonal matrices.

$$
\mathrm{U}=\mathrm{U}_{1} \mathrm{U}_{2} \ldots \mathrm{U}_{\mathrm{N}} \text {; i.e., } \mathrm{U}^{\mathrm{T}} \mathrm{AU}= \text { where } \mathrm{U}^{\mathrm{T}} \mathrm{U}=\mathrm{I}_{\mathrm{N}} \text {. }
$$

Q.E.D.
(182) Definition: A projection matrix M is a square matrix with
(i) $\quad \mathrm{M} \neq \mathrm{M}^{\mathrm{T}}$ (i.e., M is a symmetric); and
(ii) $\quad \mathrm{M}^{2}=\mathrm{M} \cdot \mathrm{M}=\mathrm{M}$.
(Sometimes projection matrices are called idempotent matrices).
(183) Lemma: The eigenvalues of a projection matrix are either equal to zero or unity.

Proof: Since M is a square, symmetric matrix, by (181) there exists an orthonormal matrix U such that
a diagonal matrix with the eigenvalues of M down the main diagonal.
Therefore,

Therefore, $\square_{i}=\square_{i}^{2} \quad$ for $\quad i=1,2, \ldots, N$

$$
\begin{aligned}
& \square \square_{i}^{2}-\square_{i}=0 \\
& \square \quad \square_{i}=\text { either } 0 \text { or } 1 .
\end{aligned}
$$

Q.E.D.

Problem 19:

Let X be an N by K matrix where $K \leq N$ and the columns of X are linearly independent so that $\left(X^{T} X\right)^{-1}$ exists.
(i) Show that $\mathrm{M}_{1} \equiv \mathrm{X}\left(\mathrm{X}^{\mathrm{T}} \mathrm{X}\right)^{-1} \mathrm{X}^{\mathrm{T}}$ and

$$
\mathrm{M}_{2} \equiv \mathrm{I}_{\mathrm{N}}-\mathrm{X}\left(\mathrm{X}^{\mathrm{T}} \mathrm{X}\right)^{-1} \mathrm{X}^{\mathrm{T}}
$$

are projection matrices. (These matrices occur in the study of the linear model in econometrics).
(ii) Let U be the orthonormal matrix which diagonalizes M_{1}; i.e., $U^{T} M_{1} U=\square_{1}$ a diagonal matrix. Show that the same U also diagonalizes M_{2} into another diagonal matrix \square_{2} and that $\square_{1}+\square_{2}=I_{N}$.

Geometrically speaking, an orthonormal transformation can be interpreted as a rotation of the system of co-ordinate axes. This geometric interpretation rests on the fact that an orthonormal transformation leaves the distance between two points x and y unchanged and also the angle between the two vectors is left unchanged in the new co-ordinate system.
(185) Definition: The distance between two N dimensional vectors x and y is defined as $\mathrm{D}(\mathrm{x}, \mathrm{y}) \equiv\left[(\mathrm{x}-\mathrm{y})^{\mathrm{T}}(\mathrm{x}-\mathrm{y})\right]^{1 / 2}$
(186) Definition: The angle which two vectors x and y make with each other is obtained by $\cos \square \equiv x^{T} y /\left(x^{T} x\right)^{1 / 2}\left(y^{T} y\right)^{1 / 2}$

(187) Lemma: An orthonormal transformation U leaves distances and angles between two points unchanged.

$$
\text { Proof: } \begin{aligned}
\mathrm{D}(\mathrm{Ux} ; \mathrm{Uy}) & \equiv\left[(\mathrm{Ux}-\mathrm{Uy})^{\mathrm{T}}(\mathrm{Ux}-\mathrm{Uy})\right]^{1 / 2} \\
& =\left[(x-y)^{\mathrm{T}} \mathrm{U}^{\mathrm{T}} \mathrm{U}(\mathrm{x}-\mathrm{y})\right]^{1 / 2} \\
& =\left[(x-y)^{\mathrm{T}} \mathrm{I}_{\mathrm{N}}(x-y)\right]^{1 / 2} \\
& =\mathrm{D}(x ; y)
\end{aligned}
$$

The angle between the points Ux and Uy is given by:

$$
\begin{aligned}
\cos \square & \equiv(\mathrm{Ux})^{\mathrm{T}}(\mathrm{Uy}) /\left(\mathrm{x}^{\mathrm{T}} \mathrm{U}^{\mathrm{T}} \mathrm{Ux}\right)^{1 / 2} \\
& =x^{\mathrm{T}} \mathrm{U}^{\mathrm{T}} \mathrm{Uy} /\left(\mathrm{x}^{\mathrm{T} x)^{1 / 2}\left(y^{\mathrm{T}} \mathrm{y}\right)^{1 / 2}}\right. \\
& =x^{\mathrm{T}} \mathrm{y} /\left(\mathrm{x}^{\mathrm{T}} \mathrm{x}\right)^{1 / 2}\left(\mathrm{y}^{\mathrm{T}}\right)^{1 / 2}
\end{aligned}
$$

which defines the angle between x and y.
Q.E.D.

Finally, let us return to the problem of giving a geometric interpretation to the determinant of a square matrix A. Let us write A and N column vectors:
$\mathrm{A}=\left[\mathrm{x}^{1}, \mathrm{x}^{2}, \ldots, \mathrm{x}^{\mathrm{N}}\right]$
We wish to show that $|\mathrm{A}|= \pm$ volume of parallelepiped generated by vectors x^{1}, \ldots, x^{N}.

Consider the case $\mathrm{N}=2$.

Recall the Gram-Schmidt Orthogonalization procedure (164).

$$
\mathrm{x}^{1}=\mathrm{t}_{11} \mathrm{u}^{1}
$$

where u^{1} is a vector of unit length
u^{2} is a vector of unit length perpendicular to u^{1}

Since the area of the parallelogram is equal to base times height, we have area $=$ $\mathrm{t}_{11} \cdot \mathrm{t}_{22}$.

For the case of general N we have a similar result:

- the length of the vector x^{1} is t_{11},
- the area of the parallelogram generated by x^{1} and x^{2} in the x_{1}, x_{2} plane is $t_{11} \bullet$ t_{22},
- the area of the parallelepiped generated by x^{1}, x^{2}, and x^{3} in x_{1}, x_{2}, x_{3} space is t_{11} - $t_{22} \cdot t_{33}$ (or the absolute value of this number if it turns out to be negative). Thus

$$
\begin{align*}
& \left. \pm \text { volume of parallelipied }= \pm \mathrm{t}_{11} \mathrm{t}_{22} \ldots \mathrm{t}_{\mathrm{NN}}=\begin{array}{cccc}
\begin{array}{ll}
\mathrm{t}_{11} & \mathrm{t}_{12} \\
\square^{0} & \ldots
\end{array} & \mathrm{t}_{22} & \ldots & \mathrm{t}_{1 \mathrm{~N}}[\\
\square & & & \vdots \\
\square & \square & 0 & \ldots \\
\mathrm{t}_{\mathrm{NN}}
\end{array}\right] \\
& = \pm|\mathrm{T}||\mathrm{U}| \text { since }|\mathrm{U}|= \pm \text { by lemma (159) } \\
& = \pm|\mathrm{UT}| \quad \text { since }|\mathrm{T}| \cdot|\mathrm{U}|=|\mathrm{U}| \cdot|\mathrm{T}|=|\mathrm{UT}| \\
& = \pm|\mathrm{A}| \quad \text { by (188). }
\end{align*}
$$

12. Additional Useful Properties of Square Invertible Matrices

The following three results are very useful in applications.
(189) Lemma: If $A=A^{T}$ and A^{-1} exists, then $A^{-1}=\left(A^{-1}\right)^{T}$; i.e., if A is symmetric and A^{-1} exists, then A^{-1} is also symmetric.

Proof: We have, using the associative law for matrix multiplication:

$$
\begin{align*}
\mathrm{A}^{-1} \mathrm{~A}\left(\mathrm{~A}^{-1}\right)^{\mathrm{T}} & =\left[\mathrm{A}^{-1} \mathrm{~A}\right]\left(\mathrm{A}^{-1}\right)^{\mathrm{T}}=\mathrm{I}_{\mathrm{N}}\left(\mathrm{~A}^{-1}\right)^{\mathrm{T}}=\left(\mathrm{A}^{-1}\right)^{\mathrm{T}} \text { and } \tag{190}\\
\mathrm{A}^{-1} \mathrm{~A}\left(\mathrm{~A}^{-1}\right)^{\mathrm{T}} & =A^{-1}\left[\mathrm{~A}\left(\mathrm{~A}^{-1}\right)^{\mathrm{T}}\right] \\
& =\mathrm{A}^{-1}\left[\mathrm{~A}^{\mathrm{T}}\left(\mathrm{~A}^{-1}\right)^{\mathrm{T}}\right] \quad \text { using } \mathrm{A}=\mathrm{A}^{\mathrm{T}} \\
& =\mathrm{A}^{-1}\left[\mathrm{~A}^{-1} A\right]^{\mathrm{T}} \quad \text { using } \mathrm{C}^{\mathrm{T}} \mathrm{~B}^{\mathrm{T}}=(\mathrm{BC})^{\mathrm{T}} \\
& =\mathrm{A}^{-1} \mathrm{I}_{\mathrm{N}}^{\mathrm{T}}=\mathrm{A}^{-1} \mathrm{I}_{\mathrm{N}}=\mathrm{A}^{-1} . \tag{191}
\end{align*}
$$

Equating (190) and (191) yields the desired result.
Q.E.D.
(192) Lemma: If A is positive definite, then so is A^{-1}.

Proof: Since A is positive definite, we have $|\mathrm{A}|>0$ and hence A^{-1} exists. Let
(193) $y \neq 0_{N} \quad$ and define x by
(194) $x \equiv A^{-1} y$.

Suppose the x defined by (194) were 0_{N}. Then

$$
\begin{aligned}
\mathrm{A}^{-1} \mathrm{y} & =0_{\mathrm{N}} \\
\mathrm{y} & =\mathrm{A} 0_{\mathrm{N}}=0_{\mathrm{N}} \quad \text { or }
\end{aligned}
$$

which contradicts (193). Thus our supposition is false and we must have $x \neq 0_{N}$. Hence, since A is positive definite, we have:

$$
\begin{array}{rlrl}
0 & <x^{\mathrm{T}} \mathrm{Ax} & \\
& =\left(\mathrm{A}^{-1} \mathrm{y}\right)^{\mathrm{T}} \mathrm{~A}\left(\mathrm{~A}^{-1} \mathrm{y}\right) & \text { using (194), } \mathrm{x}=\mathrm{A}^{-1} \mathrm{y} \\
& =\mathrm{y}^{\mathrm{T}}\left(\mathrm{~A}^{-1}\right)^{\mathrm{T}} \mathrm{~A} \mathrm{~A}^{-1} \mathrm{y} & & \\
& =y^{\mathrm{T}}\left(\mathrm{~A}^{-1}\right)^{\mathrm{T}} \mathrm{y} & & \\
& =y^{\mathrm{T}} \mathrm{~A}^{-1} \mathrm{y} & & \text { using Lemma (189). } \tag{195}
\end{array}
$$

(193) and (195) show that A^{-1} is positive definite.
Q.E.D.
(196) Corollary: If A is negative definite, then so is $A^{\square 1}$.

Proof: Adapt the above proof.
(197) Lemma: Suppose A is N by N and A^{-1} exists. Then $\left(A^{-1}\right)^{T}=\left(A^{T}\right)^{-1}$; i.e., we can interchange the order of transposition and inversion and obtain the same result.

Proof: Again use the associative law for matrix multiplication:

$$
\begin{align*}
\left(\mathrm{A}^{-1}\right)^{\mathrm{T}} \mathrm{~A}^{\mathrm{T}}\left(\mathrm{~A}^{\mathrm{T}}\right)^{-1} & =\left(\mathrm{A}^{-1}\right)^{\mathrm{T}}\left[\mathrm{~A}^{\mathrm{T}}\left(\mathrm{~A}^{\mathrm{T}}\right)^{-1}\right]=\left(\mathrm{A}^{-1}\right)^{\mathrm{T}} \mathrm{I}_{\mathrm{N}}=\left(\mathrm{A}^{-1}\right)^{\mathrm{T}} & & \text { and } \tag{198}\\
\left(\mathrm{A}^{-1}\right)^{\mathrm{T}} \mathrm{~A}^{\mathrm{T}}\left(\mathrm{~A}^{\mathrm{T}}\right)^{-1} & =\left[\left(\mathrm{A}^{-1}\right)^{\mathrm{T}} \mathrm{~A}^{\mathrm{T}}\right]\left(\mathrm{A}^{\mathrm{T}}\right)^{-1} & & \mathrm{C}^{\mathrm{T}} \mathrm{~B}^{\mathrm{T}}=(\mathrm{BC})^{\mathrm{T}} \\
& =\left[\mathrm{A} \mathrm{~A} \mathrm{~A}^{-1}\right]^{\mathrm{T}}(\mathrm{AT})^{-1} & \text { using } & \\
& =\mathrm{I}_{N}^{\mathrm{T}}\left(\mathrm{~A}^{\mathrm{T}}\right)^{-1} & & \\
& =\left(\mathrm{A}^{\mathrm{T}}\right)^{-1} . & & \tag{199}
\end{align*}
$$

Equating (198) and (199) yields the desired result.
Q.E.D.

