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1 Logic

Mathematical economics, as the title suggests is a course on the use of math-
ematics in economics. The thinking within the framework of mathematics
falls under the class of reasoning known as deductive reasoning. That is,
conclusions are drawn using logic based on statements assumed true. There-
fore, given true assumptions, the conclusions need to be proven true. As a
result, if the conclusions are in direct contradiction with reality, the error is
not in the theory but rather, on the assumptions.1 Since economic models
often take on assumptions for simplicity and clarity in exposition, the usage
of deductive logic within economics is vastly important.

1.1 Propositions

A proposition is a statement which is either true or false. For example,
10 is a natural number, 2 + 4 = 6, and today is August 7th, 2004 are all
propositions. However, not all sentences are propositions. What is your

∗Copyright c© 2004 Lester M.K. Kwong. Department of Economics, Brock Univer-
sity, 500 Glenridge Ave., St. Catharines, Ontario, L2S 3A1, Canada. Email: lk-
wong@brocku.ca. Tel: +1 (905) 688-5550, Ext. 5137.

1For example, one may assume the following two statements; (i) Birds cannot fly, (ii)
A crow is a bird. Then, it is logically correct to conclude that crows cannot fly. This
conclusion is true given the assumptions are, which, are obviously in direct contradiction
to everyday observation.
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name? and y2 = 9 are examples of sentences which are not propositions.2

Another type of sentence which is not a proposition is that of a paradox such
as “This sentence is false.”3

The three examples of propositions provided above are known as simple
or atomic propositions. Compound propositions are more complex with the
usage of connectives. In other words, atomic propositions are joined, using
connectives, to make compound propositions. For example, “it is sunny
today and today is August 7th, 2004” is a compound proposition using the
two atomic propositions “it is sunny today” and “today is August 7th, 2004.”
Naturally, “and” is the connective used to make the compound sentence valid.

Atomic propositions are often by a letter, say, P . Hence, if P is a propo-
sition, it has a truth value assigned to it. Then a compound sentence may
be created using a conjunction, disjunction or negation. For example, sup-
pose P and R are atomic propositions. Then the conjunction of P and R
is P ∧ R read “P and R.” This compound proposition is true when exactly
both P and R are true. The disjunction of P and R is P ∨ R read “P or
R.” The disjunction is true when at least P or R is true. The negation of a
proposition R is written ∼ R, −R or ⇁ R read “it is not the case that R,”
or simply as “not R” and is true exactly when R is false.

Example 1 Consider the following two propositions:

P = “The sky is blue.”

R = “I bought two apples today.”

The the statement “The sky is blue and I bought two apples today” may be
denoted as P ∧ R. The statement “The sky is blue or I bought two apples
today” is denoted P ∨R and lastly, “It is not the case that I bought two apples
today” is denoted ∼ R.

The examples of compound propositions made use of only one connective.
However, it is often the case that more complicated propositions are formed

2A truth value (i.e., true of false) cannot be assigned to questions hence it is not a
proposition. For the statement y2 = 9, on the other hand, a truth value cannot be
assigned unless the value of y is known.

3Note that if the above sentence is true then it implies that it is false. Similarly, if it
is false, then it implies it is true. A contradiction in itself.
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using many connectives. Thus, it will be useful to introduce the notion
of a proposition form. A propositional form is a statement using finitely
many logical symbols and letters. A valid propositional form is known as a
well-formed formula. It is then natural to conclude that not all propositional
forms are well-formed formula. For example, suppose P , R, and S are atomic
propositions. Then ∼ P ∼ R is not a well-formed formula while P ∧ R ∧ S
is.

Therefore, given a well-formed formula, or a valid propositional form, it is
often useful to understand when it is true. For this purpose, one may refer to
truth tables which assigns a truth value according to the connectives used.4

Example 2 Suppose P and R are atomic propositions. Then the truth table
for the connectives ∧ and ∨ are:5∣∣∣∣∣∣∣∣∣∣

P R P ∧R
T T T
T F F
F T F
F F F

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
P R P ∨R
T T T
T F T
F T T
F F F

∣∣∣∣∣∣∣∣∣∣
At this conjuncture, it is also useful to take note of the notion equivalent.

Two propositional forms are said to be equivalent if and only if they have
the same truth tables.6 It is then easy to see that two atomic propositions,
P and R, are, by definition, equivalent even if they have no relationship.

Example 3 Suppose we have the following two atomic propositions:

P = “Today is August 9th, 2004.”

R = “7 + 6 = 13.”

Then P and R are equivalent.

4The use of truth tables is sometimes referred to as Model Theory.
5For clarity, T is used to denote true and F is used to denote false.
6The notion of an “if and only if” statement has yet been covered. For a more detailed

discussion, see Section 1.2.
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Aside from the trivial example on equivalence among propositions above,
the skill to express propositions which are deemed logically equivalent is very
useful when dealing with proofs.7 This is due to the fact that it may be much
easier to prove the propositional form P ∨ (R ∧ P ) rather than P , which are
equivalent compound propositions.8

One should also take note of the notion of tautologies and its negation a
contradiction. A propositional form is termed a tautology if it takes on a true
value regardless of the propositions which constitute the propositional form.
As an illustrative example, the propositional form P∨ ∼ P is a tautology
since it is always true. One can confirm the intuition by replacing P with
any atomic propositions such as “Today is August 9th, 2004.” It is clearly
always true since today is either August 9th, 2004 or it is not. One or the
other must be true!

Given the definition of a tautology, a contradiction is therefore a propo-
sitional form which is always false. Since a contradiction is defined as the
negation of a tautology, it is easy to see that ∼ (P∨ ∼ P ) is a contradiction.
Again, using the example above, it is obviously false if one makes the claim
“It is not the case that today is either August 9th, 2004 or it is not.”

1.2 Conditional and Biconditional Sentences

Given our discussion of propositional forms and the usage of connectives in
Section 1.1, one may be tempted to think that there may exist other connec-
tives in our language. For example, there are propositional forms comprised
of atomic propositions which may not use the conjunction, disjunction, or
negation connectives. This, in fact is true as we have yet discussed the most
used connectives within economics and mathematics, in general. These are
the conditional and biconditional sentences.

Given two atomic propositions P and R, P ⇒ R read “P implies R” or
“if P , then R” is called a conditional sentence where P is referred to as the
antecedent and R the consequent. The propositional form P ⇒ R is true
exactly when the antecedent is false or the consequent is true. In summary,
the truth table is illustrated below.

7See, for example Section 2.
8To illustrate this is simple. Interested readers should attempt Exercise 3.
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∣∣∣∣∣∣∣∣∣∣
P R P ⇒ R
T T T
T F F
F T T
F F T

∣∣∣∣∣∣∣∣∣∣
It is interesting to observe that the conditional sentence P ⇒ R can

be true even if the antecedent is false. This follows since a false antecedent
automatically makes the logical relationship between P and R irrelevant. For
example, it will be useful to convince yourself that any relationship between
the two atomic propositions P =“Humans can fly” and R =“My name is
John” break down when we consider the conditional sentence P ⇒ R.9

There exists a few propositional forms related to conditional sentences
that are also worth mentioning. The first is known as the converse. The
converse for the conditional sentence P ⇒ R is R ⇒ P . The second is
known as the contrapositive and is ∼ R ⇒∼ P for the proposition P ⇒ R.
Upon scrutiny, it is easy to see that P ⇒ R is equivalent to its contrapositive
whereas this is not true for its converse.10

Example 4 Consider the following two atomic propositions:

P = “Jack ate an apple.”

R = “There are apples left.”

Then P ⇒∼ R is “If Jack ate an apple, then it is not he case that there are
apples left.” The converse is “If it is not the case that there are apples left,
then Jack ate an apple.” Similarly, the contrapositive is “If there are apples
left, then it is not the case that Jack ate an apple.”

While a conditional sentence P ⇒ R is not equivalent to its converse, they
can take on the same truth values. For example the conditional sentence “If I

9The conditional sentence is read “If humans can fly then my name is John.” This
sentence is true since the antecedent P =“Humans can fly” is false. Hence, regardless of
whether my name is John, it does not depend on the truthfulness of whether humans can
fly. Alternatively, we can analyze the conditional sentence as such; Since humans cannot
fly, it does not matter what it implies since that state of the world will never be realized.

10See Exercise 6.
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am sick, then I take medicine,” and its converse “If I take medicine, then I am
sick” are both true.11 Propositions where the conditional sentence P ⇒ R
and its converse R ⇒ P are true are known as biconditional sentences and
are denoted P ⇔ R and read “P if and only if R”.12 It is then clear that
biconditional sentences are true whenever both P and R have the same truth
values. The truth table for biconditional sentences are illustrated below.∣∣∣∣∣∣∣∣∣∣

P R P ⇔ R
T T T
T F F
F T F
F F T

∣∣∣∣∣∣∣∣∣∣
Note that conditional and biconditional sentences are often used in eco-

nomics but may be disguised in equivalent propositional forms. For example,
the central bank is conducting open market operations so the interest rate
will move is equivalent to saying if the central bank is conducting open mar-
ket operations, then the interest rate will move.13 Alternatively, the demand
curve is downward sloping is equivalent to the compound proposition that
a consumer will purchase more if and only if the price goes down since a
demand curve is by definition the mapping of the relationship between price
and quantity and we take the law of demand to be true.

It is useful to be acquainted with the following theorem without proof.14

Theorem 1 Suppose P , R and S are atomic propositions. Then the proposi-
tional form appearing in column A is logically equivalent to the corresponding

11Of course, the truthfulness of this claim is based on the assumption that one only
takes medicine when ill.

12Note that biconditional statements are commonly abbreviated as P iff R.
13Note that this is an example of a conditional sentence rather than a biconditional

sentence since the interest rate moving does not imply that the central bank is conducting
open market operations.

14The tedious proof of this is left as an exercise to the reader. See Exercise 7.
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propositional form in Column B.

A B
P ⇔ R (P ⇒ R) ∧ (R ⇒ P )
∼ (P ∨R) (∼ P ) ∧ (∼ R)
∼ (P ∧R) (∼ P ) ∨ (∼ R)
∼ (P ⇒ R) P∧ ∼ R
∼ (P ∧R) P ⇒∼ R
P ∧ (R ∨ S) (P ∧R) ∨ (P ∧ S)
P ∨ (R ∧ S) (P ∨R) ∧ (P ∨ S)

Familiarity with Theorem 1 is highly encouraged as equivalent represen-
tation of typical propositional forms will prove to be fruitful when dealing
with proofs later on.15

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.3 Existential and Universal Quantifiers

Recall from our discussion on propositions in Section 1.1 that the sentence
y2 = 9 is not a proposition. The reason was due to the fact that no truth
value may be assigned to such a sentence unless the value of y is known. For
this reason, such sentences are known as predicate and sometimes referred to
as open sentences. More specifically, a predicate is a sentence which contains
variables so that its truthfulness may not be established unless the sentence
is evaluated with particular objects.16

Since it is generally the case that not all objects will result in a truthful
predicate, the collection of objects that will is generally smaller. Hence,
it is convenient to call the collection of such objects the truth set for the
open sentence. However, the truth set is determined from a restricted class
of objects known as the universe. In other words, the universe determines
the admissible choices for the truth set and is generally apparent given the
predicate involved. For example, suppose we have the predicate “This page
has x number of words.” Then it is clear that the universe contains the set
of natural numbers N. However, it is not always the case that the universe is
apparent. For example, suppose the predicate is “y < 2”, then if the universe

15See Section 2.
16For example, the variable in the predicate y2 = 9 is y. Hence, y = 7 and y = 3 are

examples of objects for establishing the truthfulness of the predicate.
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is N then the truth set is {1} where as if the universe is R then the truth set
is the open interval (−∞, 2).

Aside from actually replacing the variable in a predicate with an object
for evaluation, in order to make it a proposition, an alternative, and equally
important, way is to use quantifiers. The existential quantifier denoted by
∃ is used to construct the proposition ∃xP (x) read “There exists a x from
the universe such that P (x)“, where P (x) is the predicate. Similarly, the
universal quantifier denoted by ∀ is used to construct the proposition ∀xP (x)
read “For all x in the universe, P (x)”. Note that ∃xP (x) is true when there
is at least one x from the universe such that P (x) is true and ∀xP (x) is true
if precisely all x in the universe makes P (x) true.

Example 5 Suppose the universe is restricted to all human-beings in Canada
and we have the predicate P (x) =“x’s name is George.” Then the proposi-
tion ∃xP (x) would read; there exists a human-being in Canada such that
his/her name is George. Similarly, the proposition ∀xP (x) would read; for
all human-beings in Canada, his/her name is George. It is then empiri-
cally/observationally clear that ∃xP (x) is true whereas ∀xP (x) is not.

Much like before, it is useful to familiarize yourself with the following
Theorem.

Theorem 2 Suppose P (x) is a predicate where x is the variable. Then:17

∼ ∃xP (x) is equivalent to ∀x ∼ P (x)

and:
∼ ∀xP (x) is equivalent to ∃x ∼ P (x)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.4 Exercises

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

17Note that equivalence of quantified sentences is established if and only if they have
the same truth value for all universes.
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Exercise 1 For each of the following sentence, state whether it is an atomic
proposition or a compound proposition or neither. (i) Today is a hot day,
(ii) 9+8-7=44, (iii) y = 6x or x = (1/6)y, and (iv) Is it too loud or too quiet
in here?

Exercise 2 Suppose P , R, and S are atomic propositions. Construct the
truth tables for the propositional form; (i) (P ∧ R) ∨ S, (ii) P ∧ R ∧ S, and
(iii) P ∨R ∨ S.

Exercise 3 Suppose P and R are atomic propositions. Show using truth
tables that the functional form P ∨ (R ∧ P ) is equivalent to P .18

Exercise 4 Suppose P and R are atomic propositions. Are the following
propositional forms a tautology, a contradiction or neither? (i) P∧ ∼ (R∨P ),
(ii) (P ∧R) ∨ (∼ P∧ ∼ R), and (iii) P ∧ (∼ R∧ ∼ P ).

Exercise 5 Suppose P and R are two atomic propositions. Show that P ⇒
R is equivalent to (∼ P ) ∨R.

Exercise 6 Suppose P and R are two atomic propositions. Show that P ⇒
R is equivalent to its contrapositive and that P ⇒ R is not equivalent to
its converse. For the latter, illustrate with an example using a language by
choosing P and R such that P ⇒ R is true and its converse is not.19

Exercise 7 Prove Theorem 1.

Exercise 8 Assume the universe is the set of real numbers R. Are the fol-
lowing propositions true? (i) ∀x, x + 2 ≥ 0, (ii) ∃x,

√
x = −8, and (iii)

∀x, 2 + 2 = x.

Exercise 9 Assume the universe is the set of real numbers R. Show that the
following is true. ∀x, ∃y,

√
(x− 1)2 − (y + 2)2 = 0.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

18It should be noted that the question has an embedded hint in that it suggests that
one shows the equivalence between the two propositional forms using truth tables.

19As noted above, while a conditional sentence and its converse are not equivalent, it is
not true that they can never take on the same truth values.
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2 Proofs

Given our discussion of propositions and the use of connective and quan-
tifiers to make valid propositional forms, the next important step is in the
determination of its truthfulness. Note that truth tables for a certain propo-
sitional form only indicate to us when a proposition (atomic or compound) is
true or false given some presumed truthfulness or falsefulness of the inherent
atomic propositions. One way of thinking about a truth table is therefore the
generic characterization of truth for a given propositional form. Therefore,
if one claims a propositional form is true, it must be proven. Since unproven
claims may not be true, the technique of proving things is an important tool
to learn since it is a valid logical deduction given the assumptions/axioms or
other previously proven results.

The notion of a correct proof is sometimes harder to grasp than one
imagines. For example, if one claims that ∀x, x2 + 7 + 15 is true and proves
by stating that for example, if x = 3, then 32 + 7 = 15 and hence true, it is
clear that for x = 2, 22 +7 = 11 6= 15. This above fallacy is a typical mistake
that most people make when constructing proofs in that proofs cannot be
complete by example.20

Therefore, this section is devoted into broad introduction to the tech-
niques of proofs.

2.1 Techniques of Proofs

We begin by introducing one of the simplest valid arguments known as the
modus ponens. The form of this proof is quite simple. Suppose P and R are
atomic propositions and suppose we want to claim that R is true. Then given
P ⇒ R, it is evident that if P is true, so must be R.21 This is illustrated

20The example in this case will be to consider only the case when x = 3 if the claim
is that ∀x, x2 + 7 = 15. As another illustrative example, if one claims that “All crows
are black.” Then one cannot prove this claim simply by showing me a black crow. If
one wants to challenge this claim, then a non-black crow (perhaps an albino) must be
presented. This claim, actually relies on empirical truth rather than absolute truth. In
other words, since one cannot check every single crow in the world, the truthfulness of
this claim lies in empirical consistency. This is referred to as inductive reasoning. Hence,
there may exist a state of the world where there exists a crow which is not black.

21Refer to the truth table for the conditional sentence P ⇒ R.
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below.
1. P ⇒ R
2. P

Conclusion R

Hence for a modus ponens, one essentially has to establish the truthfulness
of P and the conditional sentence P ⇒ R to have proven the result R is
true. This then suggests the following tautology; Suppose P and R are
propositions. Then:

P ∧ (P ⇒ R) ⇒ R

is a tautology.
The above is an example of a proof technique known as a direct proof

where the proof is provided directly from the assumed facts, namely, that
P ⇒ R and P is true. Alternatively, suppose we want to prove that P ⇒ R
is true. Then a direct proof of this will only need to show that the false
element associated with the propositional form P ⇒ R cannot happen.22

This coincides to the case where if P is true and R is false. Hence, the direct
proof will need to exhaust this possibility. More specifically, the proof will
have the features:

1. Assume P is true.

2.
... (Some logically valid argument.)

3. Therefore, R.

Note that the proof deduces from the assumption that P is true that R must
also be true. Hence, it is sufficient to conclude that P ⇒ R.

Example 6 Suppose a and b are even numbers. Prove that a × b is also a
even number.

Notice that we can define the above into the following propositions; Let
P =“a and b are even numbers.” and R =“a × b is a even number.” Then
in essence, we are proving that P ⇒ R.23

22Note that this differs from the above example as we are now establishing the truth-
fulness of P ⇒ R rather than the truthfulness of R.

23A number x is said to be even if for some integer t, x = 2t. Furthermore, note that P
is actually a compound proposition using the conjunction connective.
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Proof: Suppose P is true. Then by definition of a even number, there exist
integers y and z such that a = 2y and b = 2z. Hence, a × b = 2y × 2z =
4y × z = 2 × (2yz). Since y and z are integers, so must be 2yz. Therefore,
R is true.

While a direct proof for certain propositional forms may be easy at times,
they may be hard to construct for others. For example, it may be hard to
deduce logically from a proposition P that R is true rendering the proof of
P ⇒ R incomplete. Therefore, one may try to prove this conditional sentence
by contraposition.

Recall from Section 1.2 that the contraposition for the conditional sen-
tence P ⇒ R is ∼ R ⇒∼ P . Also recall that a conditional sentence and its
contraposition are equivalent, hence, the truth tables are identical. There-
fore, a direct proof of the contraposition for the conditional sentence P ⇒ R
will have one assuming ∼ R is true and then to logically deduce that ∼ P
is also true. In essence, this then implies that ∼ R ⇒∼ P is true and hence
P ⇒ R.

Example 7 Suppose a and b are integers. Show that if a × b is odd then a
and b are odd.24

Proof: Suppose is it not the case that a and b are odd. Then either a or
b is even or both. Let a = 2y where y is an integer. If b is odd, then
let b = 2x ± 1. Then, a × b = 2y × (2x ± 1) = 4xy − 2y = 2(2xy ± y)
and hence it is even. Therefore, suppose b is even and so b = 2x. Then
a× b = 2y × 2x = 4xy = 2(2xy) and hence even. Therefore, we have shown
that if it is not the case that a and b are odd, then it is not the case that ab
is odd. Hence, we have proven the statement if a× b is odd, then a and b are
odd.

Yet, another useful method of proof is known as a proof by contradiction.
Consider the proof regarding the truthfulness of a proposition P . Then,
it suffices to show that ∼ P implies R and ∼ R where R is some other
proposition. In other words, since R∧ ∼ R is by definition equivalent to
∼ (R∨ ∼ R), it is a contradiction. Given the tautology P∨ ∼ P , if ∼ P

24An integer x is odd if there exists some integer t such that x = 2t + 1 or x = 2t− 1.
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cannot be true (given the contradiction in R∧ ∼ R,) P must be true. The
steps for the proof of the truthfulness of some proposition P is summarized
below.

1. Suppose ∼ P .

2.
...

3. Therefore, R.

4.
...

5. Therefore, ∼ R.
6. Therefore, R∧ ∼ R, a contradiction.
7. Hence, P is true.

Example 8 Suppose a and b are real numbers. Prove that if a < b then
2a < 2b.
Proof: Suppose a < b and 2a ≥ 2b.25 Since 2 > 0, then dividing both sides
by two for 2a ≥ 2b implies a ≥ b. Hence, (a < b) ∧ (a ≥ b) is true, a
contradiction. Therefore, if a < b then 2a < 2b.

The last type of proof that one should familiarize themselves with is the
proof using the principle of mathematical induction. For statements which
are recursive in nature, we may want to prove such statements inductively.
A proof using the principle of mathematical induction begins with “Let S =
{n ∈ N : the statement is true for n}. Then the following steps are taken;
(i) Show that 1 ∈ S, (ii) Show that if n ∈ S then n + 1 ∈ S (The inductive
set S exists), and lastly, (iii) By the principle of mathematical induction,
S = N.”26

This method of proof is extremely useful for propositions like ∀n ∈ N,
show that n2 ≤ (n + 1), or ∀n ∈ N, n + 3 < 5n2. We illustrate the latter of
the two in the following example.

Example 9 Prove that for all n ∈ N, n + 3 < 5n2.
Proof: Consider n = 1. It is clear that 1+3 < 5 and therefore, this claim is
satisfied for n = 1 (This is step (i) above where we have shown that 1 ∈ S).

25Note that this is the negation for the proposition “If a < b then 2a < 2b.”
26The notion of sets and membership of items to sets has yet been discussed. Refer to

the notes of Set Theory for a more detailed exposition.
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Now suppose this is true for some n ∈ N. Then for n + 1 we have:

(n + 1) + 3 = n + 3 + 1 < 5n2 + 1

where the last inequality follows from the assumption that n + 3 < 5n2. Fur-
thermore, it follows that:

5n2 + 1 < 5n2 + 10n + 5 = 5(n + 1)2

which follows from the assumption that n ∈ N. Therefore, the above implies
that (n + 1) + 3 < 5(n + 1)2 and hence, the claim is true for n + 1 as well
(This is step (ii) above where we have shown that if n ∈ S then n + 1 ∈ S).
Hence, we have proved by induction that the claim is true for all n ∈ N (This
is step (iii) above).

In essence, one may think of a prove by induction to be like a domino set.
We simply have to knock off the first piece (Step (i)) and show that the rest
of domino set is aligned so that all the other pieces fall (Step (ii)).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.2 Exercises

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Exercise 10 Suppose a is an integer. Prove that if a2 is odd then a is odd.

Exercise 11 Suppose a and b are integers. Prove that if a and b are even,
then a + b is even.

Exercise 12 Prove that there exists integers a and b such that 3a−4b = 73.

Exercise 13 Prove that there exists an odd integer a and a even integer b
such that 3a + 4b = 17.

Exercise 14 Prove that for all n ∈ N, 2n ≥ 1 + n.

Exercise 15 Is the following true or false? If true, prove. If false, show a
counterexample. For all n ∈ N, n2 + 1 < n3.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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