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Today’s lecture is about optimization. Useful references are chapters 1-5 of Dixit (1990),
chapters 16-19 of Simon and Blume (1994).

We typically model economic agents as optimizing some objective function. Consumers
maximize utility.

Example 0.1. A consumer with income y chooses a bundle of goods x1, ..., x, with
prices p1, ..., pn to maximize utility u(x).

max u(x1,...,Xy) S.t. p1x1 4+ +puxn <Y
X1,000,Xn

Firms maximize profits.

Example 0.2. A firm produces a good y with price p, and uses inputs x € R* with
prices w € R¥. The firm’s production function is f : R*>R. The firm’s problem is

maxpy —w xs.t f(x) =y
y,x

1. UNCONSTRAINED OPTIMIZATION

Although most economic optimization problems involve some constraints it is useful
to begin by studying unconstrained optimization problems. There are two reasons for
this. One is that the results are somewhat simpler and easier to understand without
constraints. The second is that we will sometimes encounter unconstrained problems.
For example, we can substitute the constraint in the firm’s problem from example 0.2 to
obtain an unconstrained problem.

maxp f(x) —w!x

1.1. Notation and definitions. An optimization problem refers to finding the maximum
or minimum of a function, perhaps subject to some constraints. In economics, the most
common optimization problems are utility maximization and profit maximization. Be-
cause of this, we will state most of our definitions and results for maximization problems.

1This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

1See appendix A if any notation is unclear.
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Of course, we could just as well state each definition and result for a minimization problem
by reversing the direction of most inequalities.
We will start by examining generic unconstrained optimization problems of the form

max f(x)

where x € R" and f : R"—R. To allow for the possibility that the domain of f is not all of
R", we will let U € R", be the domain, and write max,cy f(x) for the maximum of f on
u.

If F* = max, f(x), we mean that f(x) < F* for all x and f(x*) = F* for some x".

Definition 1.1. F* = max,cys f(x) is the maximum of f on U if f(x) < F* for all x and
f(x*) = F* for some x".

There may be more than one such x*. We denote the set of all x* such that f(x*) = F*
by arg max, ., f (x) and might write x* € argmax, f(x), or, if we know there is only one
such, x*, we sometimes write x* = arg max, f(x).

Definition 1.2. x* € U is a maximizer of f on U if f(x*) = maxyey f(x). The set of all
maximizers is denoted argmax . ; f(x).

Definition 1.3. x* € U is a strict maximizer of f if f(x*) > f(x) for all x # x*

Definition 1.4. f has a local maximum at x if 36 > 0 such that f(y) < f(x) forall y in U
and within 6 distance of x (we will use the notation y € Ns(x) N U, which could be read y
in a 6 neighborhood of x intersected with U). Each such x is called a local maximizer of
f. I f(y) < f(x)forall y # x, y € Ns(x) N U, then we say f has a strict local maximum
at x.

When we want to be explicit about the distinction between local maximum and the
maximum in definition 1.1, we refer to the later as the global maximum.

Example 1.1. Here are some examples of functions from R—R and their maxima and
minima.

(1) f(x) = x? is minimized at x = 0 with minimum 0.

(2) f(x) =c has minimum and maximum c. Any x is a maximizer.

(3) f(x) = cos(x) has maximum 1 and minimum -1. 2nn for any integer 7 is a

maximizer.
(4) f(x)=cos(x)+ x/2has no global maximizer or minimizer, but has many local
ones.

A related concept to the maximum is the supremum.

Definition 1.5. The supremum (or least upper bound) of f on U is S is written,
S =sup f(x),
xeld

and means that S > f(x) for all x € U and for any A < S there exists x4 € U such that

f(xA) > A.
2
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The main difference between the supremum and maximum is that the supremum can
exist when the maximum does not.

Example 1.2. Let x € Rand f(x) = —1+1x2. 0.00

Then maxyer f(x) does not exist, but 0.95
sup,.g f(x) =0. '

+— —0.50

-0.75

-1.00

-20 -10 0 10 20
X

An important fact about real numbers is that if f : R”"—R is bounded above, i.e. there
exists B € R such that f(x) < B for all x € R", then sup, . f(x) exists and is unique.
The infimum is to the minimum as the supremum is to the maximum.

1.2. First order conditions. 2Suppose we want to maximize f (x). If we are at x and travel
some small distance A in direction v, then we can approximate how much f will change
by its directional derivative, i.e.

f(x+Av) = f(x)+df(x;v)A.

If there is some direction v with df (x; v) # 0, then we could take that Av or —Av step and
reach a higher function value. Therefore, if x is a local maximum, then it must be that

df(x;v) =0 for all v. From theorem B.1 this is the same as saying g—i =0foralli.

Theorem 1.1. Let f : R"—>R, and suppose f has a local maximum x and f is differentiable at x.
of .
Then Froi Ofori=1,..,n.

Proof. The paragraph preceding the theorem is an informal proof. The only detail miss-
ing is some care to ensure that the = is sufficiently accurate. If you are interested,
see the past course notes for details. http://faculty.arts.ubc.ca/pschrimpf/526/
lecl@optimization.pdf m|

The first order condition is the fact that g—iri = 0 is a necessary condition for x to be a
local maximizer or minimizer of f.

Definition 1.6. Any point x such that f is differentiable at x and D f, = 0 is call a critical
point of f.

If f is differentiable, f cannot have local minima or maxima (=local extrema) at non-
critical points. f might have a local extrema its critical points, but it does not have to.
Consider f(x) = x3 £'(0) = 0, but 0 is not a local maximizer or minimizer of F. Similarly,
if f : R25R, f(x) = x% - x%, then the partial derivatives at 0 are 0, but 0 is not a local
minimum or maximum of f.

2This section will use some results on partial and directional derivatives. See appendix B and the summer
math review for reference.
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2. SECOND ORDER CONDITIONS

To determine whether a given critical point is a local minimum or maximum or neither
we can look at the second derivative of the function. Let f : R"—=R and suppose x* is
a critical point. Then g—i(x*) = 0. To see if x* is a local maximum, we need to look at
f(x* + h) for small h. We could try taking a first order expansion,

f(x*+h)~ f(x*)+ D fh,

but we know that D f,» = 0, so this expansion is not useful for comparing f(x*) with
f(x*+h).

If f is twice continuously differentiable, we can instead take a second order expansion
of f around x".

1
f(x*+0v)~ f(x*)+ D frv+ EUTDfow

where D?f,- is the matrix of f’s second order partial derivatives. Since x* is a critical,
point D f,- =0, so

* * 1
f(xX*+0)—f(x") = EZJTDfo*ZJ.
We can see that x* is a local maximum if

1

EUTDZ fro <0
for all v # 0. The above inequality will be true if vI D? f,-v < 0 for all v # 0. The Hessian,
D?f- is just some symmetric 7 by n matrix, and vT D?F,«v is a quadratic form in v. This

motivates the following definition.

Definition 2.1. Let A be a symmetric matrix, then A is

e Negative definite if xT Ax < 0 for all x # 0

e Negative semi-definite if x’ Ax < 0 for all x # 0

e Positive definite if x’ Ax > 0 forall x # 0

e Positive semi-definite if xTAx > 0 forall x # 0

e Indefinite if 9 x; s.t. x{Axl > (0 and some other x, such that szsz <0.

Later, we will derive some conditions on A that ensure it is negative (semi-)definite. For
now, just observe that if D?F.. s negative semi-definite, then x* must be a local maximum.
If D°F,- is negative definite, then x* is a strict local maximum. The following theorem
restates the results of this discussion.

Theorem 2.1. Let F : R"—R be twice continuously differentiable and let x* be a critical point. If

(1) The Hessian, D*F-, is negative definite, then x* is a strict local maximizer.

(2) The Hessian, D*F-, is positive definite, then x* is a strict local minimizer.

(3) The Hessian, D*F-, is indefinite, x* is neither a local min nor a local max.

(4) The Hessian is positive or negative semi-definite, then x* could be a local maximum,
minimum, or neither.

Proof. The main idea of the proof is contained in the discussion preceding the theorem.
The only tricky part is carefully showing that our approximation is good enough. m|
4
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When the Hessian is not positive definite, negative definite, or indefinite, the result of
this theorem is ambiguous. Let’s go over some examples of this case.

Example 2.1. F : R—R, F(x) = x*. The 1.00

first order condition is 4x3 = 0, s0 x* = 0

is the only critical point. The Hessian is 0-75

F”(x) = 12x%2 = 0 at x*. However, x* has a « 0.50

strict local minimum at 0. 0.95
0.00

Example2.2. F : R2-R, F(xq, x2) = —x%. The first order conditionis DF, = (—2x1,0) =
0, so the x] =0, x3 € R are all critical points. The Hessian is

-2 0
2p _
DFX_(O O)

This is negative semi-definite because h" D?F.h = —2h? < 0. Also, graphing the
function would make it clear that x] = 0, xJ € R are all (non-strict) local maxima.

Example 2.3. F : R25R, F(x1,x2) = —x% + x3.

(—2x1, 4x§’) =0, so the x* = (0, 0) is a critical point. The Hessian is

1321:x=(_2 O)

2
0 12x2

The first order condition is DF, =

This is negative semi-definite at 0 because hTD2Fgh = —Zh% < 0. However, 0 is not a
local maximum because F(0, x2) > F(0, 0) for any x, # 0. 0is alsonot a local minimum
because F(x1,0) < F(0,0) for all x1 # 0.

In each of these examples, the second order condition is inconclusive because WT'D2F.h =0
for some h. In these cases we could determine whether x* is a local maximum, local
minimum, or neither by either looking at higher derivatives of F at x*, or look at D?2F, for
all x in a neighborhood of x*. We will not often encounter cases where the second order
condition is inconclusive, so we will not study these possibilities in detail.

Example 2.4 (Competitive multi-product firm). Suppose a firm has produces k goods
using 1 inputs with production function f : R"—>RF. The prices of the goods are p,
and the prices of the inputs are w, so that the firm’s profits are

IT(x) = pr(x) —w’x.
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The firm chooses x to maximize profits.

max pr(x) —wlx
X

The first order condition is

or without using matrices,

fori=1,...,n
The second order condition is that

Z}lp]af](x) 2]1p18x19xn( )

DZ[pr]x _ . .
3f . ’f

Z] 1p]3x13§cn( ) Z}lp]aj(x)

must be negative semidefinite.”

"There is some awkwardness in the notation for the second derivative of a function from R" —»R¥ when
k > 1. The first partial derivatives can be arranged in an k X n matrix. There are then k X n X n second
partial derivatives. When k = 1 it is convenient to write these in an n X n matrix. When k > 1, one
could arrange the second partial derivates in 3-d array of dimension k X n X n, or one could argue
that an kn X n matrix makes sense. These higher order derivatives are called tensors and physicists
and mathematicians do have some notation for working with them. However, tensors do not come up
that often in economics. Moreover, we can usually avoid needing any such notation by rearranging
some operations. In the above example, f : R"—RF, so D?f should be avoided (especially if we
combine it with other matrix and vector algebra), but pT f(x) is a function from R” to R, so D?[p f] is
unambiguously an # X n matrix.

3. CONSTRAINED OPTIMIZATION

To begin our study of constrained optimization, let’s consider a consumer in an economy
with two goods.

Example 3.1. Let x; and x; be goods with prices p; and p,. The consumer has income
y. The consumer’s problem is

max u(x1,x2) s.t. p1x1 +pax2 <y
X1,X2

In economics 101, you probably analyzed this problem graphically by drawing in-
difference curves and the budget set, as in figure 1. In this figure, the curved lines
are indifference curves. That is, they are regions where utility is constant. So going
outward from the axis they show all (x1, x2) such that u(x1,x2) = c1, u(x1,x2) = c2,
u(xy,x2) = c3, and u(x1,x2) = c4 with ¢; < c2 < ¢3 < c4. The diagonal line is the
budget constraint. All points below this line satisfy the constraint p1x1 + pox2 < y.
The optimal x1, x, is the point x* where an indifference curve is tangent to the budget
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line. The slope of the budget line is —%. The slope of the indifference curve can be
found by implicitly differentiating,

u ou 3
a—m(x )d.X'1 + a—xz(x )dX2 =0
d
dx; (x") _Tom
dx1 B du
8x2

So the optimum satisfies

du

o _ 11
du  p,’
8x2 pZ

The ratio of marginal utilities equals the ratio of marginal prices. Rearranging, we can
also say that

Ju  du
ox _ 9%
p1 Pz'

Suppose we have a small amount of additional income A. If we spend this on x1, we
Ju

would get A/p1 more of x1, which would increase our utility by ;711
the marginal utility from spending additional income on either good should be the
same. Let’s call this marginal utility of income y, then we have

du  du
= Ix

A. At the optimum,

H= P1 p2
or

ou
o, HP1 =0

du
o, HP2=0

This is the standard first order condition for a constrained optimization problem.

Now, let’s look at a generic maximization problem with equality constraints.
max f(x) s.t. h(x) =c

where f : R">R and h : R">R™. As in the unconstrained case, consider a small
perturbation of x by some small v. The function value is then approximately,

f(x+v)= f(x)+Dfxv
and the constraint value is
h(x +v) ~ h(x) + Dhyv

x + v will satisfy the constraint only if Dh,v = 0. Thus, x is a constrained local maximum
if for all v such that Dh,v = 0 we also have D fyv = 0.
Now, we want to express this condition in terms of Lagrange multipliers. Remember
that Dh, is an m X n matrix of partial derivatives, and D fy is a 1 X n row vector of partial
7
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Ficure 1. Indifference curves
|

\ x1

derivatives. If n = 2 and m = 1 this condition can be written as

oh oh
a—(x)vl + a—(x)vz =0
implies
0 0
—f(x)v1 + —f(x)vz =0.
83(1 8x2

Solving the first of these equations for vy, substituting into the second and rearranging
gives

&x1 L (x) axz L (x)

axl (x) sz (x)

which as in the consumer example above, we can rewrite as

8f dh
QX1 “8x1
af dh
8_)(,'2 - [Ja—xz =0.

for some constant p. Similar reasoning would show that for any n and m = 1, if for all v
such that Dh,v = 0 we also have D f,v = 0, then it is also true that there exists y such that

(9f oh
8x1 ~Hox 8x1

for i =1, ...,n. Equivalently, using matrix notation D f, = uDh,. Note that conversely, if

such a u exists, then trivially for any v with Dh,v = 0, we have D fyv = uDh,v = 0.
8
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When there are multiple constraints, i.e. m > 1, it would be reasonable to guess that
Dhyv = 0 implies D f,v = 0 if and only if there exists u € R™ such that

af I an
a—xi—jzz;ma_xi—o

or in matrix notation D f, = u'Dhy. This is indeed true. It is tedious to show using
algebra, but will be easy to show later using some results from linear algebra.

A heuristic geometric argument supporting the previous claims is as follows. Imagine
the level sets or contour lines of /(). The feasible points that satisfy the constraint lie
on the contour line with h(x) = 0. Similarly imagine the contour lines of f(-). If x* is
a constrained maximizer, then as we move alone the contour line /(-) = 0, we must stay
on the same contour line (or set if f is flat) of f. In other words, the contour lines of
h and f must be parallel at x*. Gradients give the direction of steepest ascent and are
perpendicular to contour lines. Therefore, if the gradients of & and f are parallel, then so
are the contour lines. Gradients being parallel just means that they should be multiples
of one another, i.e. D f, = yTth for some yT.

The following theorem formally states the preceding result.

Theorem 3.1 (First order condition for maximization with equality constraints). Let f :
R"—>Rand h : R"—=R" be continuously differentiable. Suppose x* is a constrained local maximizer
of f subject to h(x) = c. Also assume that Dh,- has rank m. Then there exists u* € R"™ such that
(x*, u*) is a critical point of the Lagrangian,

L(x, ) = f(x) = u" (h(x) - o).
ie.
_Of b

= W o) =0

JL .,

8_xi(x ,,U)

JL

— (" u) =h(x") —c=0

T
fori=1,..,nandj=1,.., m.

The assumption that Dh,. has rank m is needed to make sure that we don’t divide
by zero when defining the Lagrange multipliers. When there is a single constraint, it
simply says that at least one of the partial derivatives of the constraint is non-zero. This
assumption is called the non-degenerate constraint qualification. It is rarely an issue for
equality constraints, but can sometimes fail as in the following examples.

Exercise 3.1. (1) Solve the problem:
max a1 log x1 + azlog xo s.t. (p1x1 + paxz — y)3 =0
X
What goes wrong? How does it differ from the following problem:

max a1 log x1 + azlog xo s.t. (p1x1+p2x2—y) =0
X
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(2) Solve the problem:

max x1 + xp s.t. x% + x% =0

X1,X2

3.1. Lagrange multipliers as shadow prices. Recall that in our example of consumer
choice, the Lagrange multiplier could be interpreted as the marginal utility of income. A
similar interpretation will always apply.

Consider a constrained maximization problem,

mfle(x) s.t. h(x) =c¢

From 3.1, the first order conditions are
D fr — uTDhy. =0
h(x*) — ¢ =0.

What happens to x* and f (x”) if ¢ changes? Let x*(c) denote the maximizer as a function
of c. Differentiating the constraint with respect to ¢ shows that

DhyyDx; =1
By the chain rule,
D, (f(X*(C))) = Dfx*(c)DxZ'
Using the first order condition to substitute for D fy«(¢), we have

De (f(x(e))) =p" Dh(o Dx;
_,T
=
Thus, the multiplier, u, is the derivative of the maximized function with respect to c. In
economic terms, the multiplier is the marginal value of increasing the constraint. Because

of this u; is called the shadow price of c;.

Example 3.2 (Cobb-Douglas utility ). Consider the consumer’s problem in example
3.1 with Cobb-Douglas utility,

ar,.az

rxnax XX, s.t. p1x1+p2x2=y
1,X2
The first order conditions are
al—l an _
a1x; Xyt —pip = 0

xi”aczxgrl —pou=0
p1x1+p2x2—y =0

Solving for x1 and x; yields

ai
X1 = l
a1+ az p1
a Y

2= .
a1+ az p2

10
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The expenditure share of each good %, is constant with respect to income. Many
economists, going back to Engel (1857) have studied how expenditure shares vary
with income. See [L.ewbel (2008) for a brief review and additional references.

If we solve for p, we find that

a1, a2 a1+az—1
) Yy

‘u = " 5
1+a2 a1«
(0(1 + 0(2) pl p2

p is the marginal utility of income in this model. As an exercise you may want to
verify that if we were to take a monotonic transformation of the utility function (such
as log(x;"x,?) or (x;'xy?)F) and re-solve the model, then we would obtain the same
demand functions, but a different marginal utility of income.

3.2. Inequality constraints. Now let’s consider an inequality instead of equality con-
straint.

max f(x)s.t g(x) <b.

When the constraints binds, i.e. g(x*) = b, the situation is exactly the same as with an
equality constraint. However, the constraints do not necessarily bind at a local maximum,
so we must allow for that possibility.

Suppose x* is a constrained local maximum. To begin with, let’s consider a simplified
case where there is only one constraint, i.e. g : R"—R. If the constraint does not bind,
then for small changes to x*, the constraint will still not bind. In other words, locally
it as though we have an unconstrained problem. Then, as in our earlier analysis of
unconstrained problems, it must be that D f,- = 0. Now, suppose the constraint does
bind. Consider a small change in x, v. Since x* is a local maximum, it must be that if
f(x*+v) > f(x*), then x* + v must violate the constraint, g(x* +v) > b. Taking first order
expansions, we can say thatif D fy:v > 0, then D g,-v > 0. This will be trueif D f,» = AD g,
for some A > 0. Note that the sign of the multiplier A matters here.

To summarize the results of the previous paragraph. If x* is a constrained local max-
imum, then there exists A > 0 such that D f,» — ADg,+ = 0. Furthermore if A > 0, then
g(x*) =b. If g(x*) < b, then A =0 (itis also possible, but rare for both A = 0 and g(x*) = b).
This situation where if one inequality is strict and then another holds with equality and
vice versa is called a complementary slackness condition.

Essentially the same result holds with multiple inequality constraints.

Theorem 3.2 (First order condition for maximization with inequality constraints). Let
f :R">Rand g : R"—>R"™ be continuously differentiable. Suppose x* is a local maximizer of f
subject to g(x) < b. Suppose that the first k < m constraints, bind

gj(x*) = b]'

for j =1...k and that the Jacobian for these constraints,
9Ifn .. &
dxq ox,
98k ... 98
Jx oxy,

11
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has rank k. Then, there exists A* € R™ such that for
L(x,A) = f(x) = AT(g(x) = b).

we have
aL * * _af *Tag *\
a—Xi(x,A)—a—Xi—/\ a—XZ(X)—O
*aL * *\ __ 1 * * _
A],&—Aj(x,)\)_ftj(gj(x)—b)_o
A;ZO
8j(x) < b;

fori=1,...,nand j =1,...,m. Moreover for each j at least 1f/\; > 0 then gj(x*) = bj and if
gj(x*) < b, then /'\;. = 0 (complementary slackness).

Some care needs to be taken regarding the sign of the multipliers and the setup of
the problem. Given the setup of our problem, max, f(x) s.t. g(x) < b, if we write the
Lagrangian as L(x, A) = f(x) — /\T(g(x) — b), then the A; > 0. If we instead wrote the
Lagrangian as L(x,A) = f(x) + AT( g(x) — b), then we would get negative multipliers.
If we have a minimization problem, min, f(x) s.t. g(x) < b, the situation is reversed.
f(x)=AT(g(x)-b)leads to negative multipliers, and f(x) + AT(g(x)—Db) leads to positive
multipliers. Reversing the direction of the inequality in the constraint, i.e. g(x) > b
instead of g(x) < b, also switches the sign of the multipliers. Generally it is not very
important if you end up with multipliers with the “wrong” sign. You will still end up
with the same solution for x. The sign of the multiplier does matter for whether it is the
shadow price of b or —b.

To solve the first order conditions of an inequality constrained maximization problem,
you would first determine or guess which constraints do and do not bind. Then you
would impose A; = 0 for the non-binding constraints and solve for x and the remaining
components A. If the resulting x do lead to the constraints not binding that you guessed
not binding, then that x is a possible local maximum. To find all possible local maxima,
you would have to repeat this for all possible combinations of constraints binding or not.
There 2" such possibilities, so this process can be tedious.

Example 3.3. Let’s solve
max xix» s.t. x% + 2x§ <3
X
2, .2
2x7+ x5 <3
The Lagrangian is

L(x,A) = x1x2 — A (x] +2x5 = 3) — A2(2x] + x5 — 3)

12
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The first order conditions are
0 =X2 — 2/\1X1 - 4A2x1
0 =X1 — 4/\13(2 - 2)\23(72
0 =A1(x3 +2x3 - 3)
0=A2(2x% + x5 = 3)

Now, we must guess which constraints bind. Since the problem is symmetric in x1 and
x2, we only need to check three possibilities instead of all four. The three possibilities
are neither constraint binds, both bind, or one binds and one does not.

If neither constraint binds, then Ay = A, = 0, and the first order conditions imply
x1 = x2 = 0. This results in a function value of 0. This is feasible, but it is not the
maximum since for example, small positive x1 and x, would also be feasible and give
a higher function value.

Instead, suppose both constraints bind. Then the solutions to x% + 2x§ = 3 and
Zx% + x% = 3 are x1 = 1 and x; = £1. Substituting into the first order condition and
solving for A1 and A, gives

0=1-2A; -4A,
0=1-4A -2A,
% =A1=Ap
Both A1 and A, are positive, so complementary slackness is satisfied.

Finally, let’s consider the case where the first constraint binds but not the second.

In this case A, = 0, and taking the ratio of the first order conditions gives
X2 _ 1x 1
20

or x% = %x% Substituting this into the first constraint yields x% + x% =3,s0 x1 =3/2,
and x, = V3/4. However, then ZX% +x% =3+3/4 > 3. The second constraint is violated,
so this cannot be the solution.

Fortunately, the economics of a problem often suggest which constraints will bind, and

you rarely actually need to investigate all 2" possibilities.

Example 3.4 (Quasi-linear preferences). A consumer’s choice of some good(s) of inter-
est x and spending on all other goods z is often modeled using quasi-linear preferences.
U(x,z) = u(x) + z. The consumer’s problem is

maxu(x)+zst. px+z<y
X,z

x>0

z >

13
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Let A, iy, and u, be the multipliers on the constraints. The first order conditions are

u'(x) — Ap + py =0

1-A+u,=0
along with the complementary slackness conditions
A >0 px+2z <y
ty 20 x>0
pz =0 z2>0

There are 2% = 8 possible combinations of constraints binding or not. However, we
can eliminate half of these possibilities by observing that if the budget constraint is
slack, px + z < y, then increasing z is feasible and increases the objective function.
Therefore, the budget constraint must bind, px + z = y and A > 0. There are four
remaining possibilities. Having 0 = x = z is not possible because then the budget
constraint would not bind. This leaves three possibilities

(1) 0 < x and 0 < z. That implies y, = u, = 0. Rearranging the first order
conditions gives that u’(x) = p and from the budget constraint z = y — px.
Depending on u, p, and y, this could be the solution.

(2) 0 = x and 0 < z. That implies that u, = 0 and py > 0. From the budget
constraint, z = y. From the first order conditions we have u’(0) = p + u,. Since
Uy must be positive, this equation requires that u’(0) < p. This also could be
the solution depending on u, p, and y

(3) 0 < x and 0 = z. That implies that u, = 0. From the budget constraint, x = y/p.
Combining the first order conditions to eliminate A gives 1+ u, = YUIP Gince

tz > 0, this equation requires that u’(y/p) > p. This also could be the solution

depending on u, p, and y.

Exercise 3.2. Show that replacing the problem
max f(x)s..t g(x) < b.
X

with an equality constrained problem with slack variables s,

max f(x)s.t g(x)—s=b,5>0

leads to the same conclusions as theorem 3.2

3.3. Second order conditions. As with unconstrained optimization, the first order con-
ditions from the previous section only give a necessary condition for x* to be a local
maximum of f(x) subject to some constraints. To verify that a given x* that solves the first

order condition is a local maximum, we must look at the second order condition. As in
14
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the unconstrained case, we can take a second order expansion of f(x) around x*.

f(x*+v)— f(x*) =D frv + %UTDZfX*U

1

ZvTszx*v

This is a constrained problem, so any x* + v must satisfy the constraints as well. As before,
what will really matter are the equality constraints and binding inequality constraints. To
simplify notation, let’s just work with equality constraints, say h(x) = c. We can take a
first order expansion of i around x* to get

h(x*+v) = h(x*) + Dhy.v = c.
Then v satisfies the constraints if

h(x*) + Dhyv =c
th*’(J :O

Thus, x* is a local maximizer of f subject to h(x) = c if
0T D?frv <0

for all v such that that Dh,-v = 0. The following theorem precisely states the result of this
discussion.

Theorem 3.3 (Second order condition for constrained maximization). Let f : U—R be twice
continuously differentiable on U, and h : U—R! and ¢ : U—R™ be continuously differentiable
on U C R™. Suppose x* € interior(U) and there exists u* € Rl and A* € R™ such that for

L(x, A, u) = f(x) = AT(g(x) = b) — uT (h(x) - ¢).
we have

d d
8_L(x*, %) :_f — A*T_g
8xi

8xi 89(?1'
a—L(x*, A) =he(x™) —c=0
8[45

* * ah *
() = == () =0

*8L * * — * * —
A].a—Aj(x ,AY) —A]. (g(x")—¢)=0
/\;20

g(x*) <b

15
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Let B be the matrix of the derivatives of the binding constraints evaluated at x~,

o .. 9
Jx1 oxy,
L My
_ | 9x ox,
B=lom . og
Jx1 ox,
98k ... 98k
Jxq ox,

If

v'D?fr.v <0
for all v # 0 such that Bv = 0, then x* is a strict local constrained maximizer for f subject to
h(x)=cand g(x) < D.

Recall from above that an 1 by n matrix, A, is negative definite if xT Ax < 0 for all x # 0.
Similarly, we say that A is negative definite on the null space? of B if xTAx < 0 for all
x € N(B) \ {0}. Thus, the second order condition for constrained optimization could be
stated as saying that the Hessian of the objective function must be negative definite on the
null space of the Jacobian of the binding constraints. The proof is similar to the proof of
the second order condition for unconstrained optimization, so we will omit it.

4. COMPARATIVE STATICS

Often, a maximization problem will involve some parameters. For example, a consumer
with Cobb-Douglas utility solves:
a

%) —
1;}&)1{); X)X, s.t. p1x1 +p2x2 =y.

The solution to this problem depends a1, a3, p1, p2, and y. We are often interested in how
the solution depends on these parameters. In particular, we might be interested in the
maximized value function (which in this example is the indirect utility function)
v(p1,p2,Y,a1,a2) = max XXyt st prxy+ paxz2 = .
1,42

We might also be interested in the maximizers xi (p1,p2, v, 1, a2) and X5 (p1,p2, ¥, a1, a2)
(which in this example are the demand functions).

4.1. Envelope theorem. The envelope theorem tells us about the derivatives of the max-
imum value function. Suppose we have an objective function that depends on some
parameters 0. Define the value function as

v(0) =max f(x,0) s.t. h(x) =c.
X
Let x*(0) denote the maximizer as function of 9, i.e.
x*(0) = argmax f(x, 0) s.t. h(x) =c.
X

3The null space of an m X n matrix B is the set of all x € R" such that Bx = 0. We will discuss null spaces
in more detail later in the course.

16
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By definition v(0) = f(x*(0), 0). Applying the chain rule we can calculate the derivative
of v. For simplicity, we will treat x and O as scalars, but the same calculations work when
they are vectors.

do _Jf of
18 -2 (0),0)+ 0,07 (0)

From the first order condition, we know that

af . dx*  oh ., . dx*
55 (0(0),0) 75 = p=—(x'(0)) 75

However, since x*(0) is a constrained maximum for each 6, it must be that h(x*(0)) = ¢
for each 6. Therefore,

d . Jh
0= —=h(x'(0) =5

Thus, we can conclude that

do _df
20— (0),0).

More generally, you might also have parameters in the constraint,
v(0) =max f(x,0)s.t. h(x,0) =c.
X

Following the same steps as above, you can show that

do _9f  oh_dL

10 00 Y907 9o

Note that this result also covers the previous case where the constraint did not depend on

6. In that case, gg 0 and we are left with just gg = ag

The following theorem summarizes the above discussion.

Theorem 4.1 (Envelope). Let f : R =R and h : R™*—R™ be continuously differentiable.
Define
v(0) =max f(x,0)s.t. h(x,0)=c
X

where x € R" and 6 € RK. Then

Dgvg = Dg fr0 — i Dy g

where 1 are the Lagrange multipliers from theorem 3.1, Dg fx+ o denotes the 1 X k matrix of partial
derivatives of f with respect to O evaluated at (x*, 0) , and Dghy- g denotes the m X k matrix of
partial derivatives of f with respect to 0 evaluated at (x*, 0).

Example 4.1 (Consumer demand). Some of the core results of consumer theory can
be shown as simple consequences of the envelope theorem. Consider a consumer
choosing goods x € R" with prices p and income y. Define

v(p,y) =maxu(x)s.t plx—y <0.

17
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In this context, v is called the indirect utility function. From the envelope theorem,

dv .
9_171' =—ux;(p,y)
dv

Jy =t
Taking the ratio we have a relationship between the (Marshallian) demand function,
x*, and the indirect utility function,
_dv
Ipi
[

dy

xi(p,y) =

This is known as Roy’s identity.
Now consider the mirror problem of minimizing expenditure given a target utility
level,
e(p, i) = mxiinx s.t. u(x) >u

In general, ¢ is a maximum value function, but in this particular context, it is the
consumer’s expenditure function. Using the envelope theorem again,

86 N __h _
8_m(p’ u)=x;(p,u)

where xlh (p,i1) is the constrained minimizer. It is the Hicksian (or compensated)
demand function.

Finally, using the fact that xf’ (p,u) = x;(p,e(p,u)) and differentiating with respect
to px gives Slutsky’s equation.

8x1}? dx:  Ix; Je
Ipe " Ipx " Iy I
x: Ix;
:8—pk + ka
Slutsky’s equation is useful because we can determine the sign of some of these
derivatives. From above we know that

5—;(;0, i) =x; (p, )
SO
Ix!(p, it) _ d%e
apj Ipjopi
If we fix p and xg = xh(p, i), we know that u(xg) > i, so xg satisfies the contraint in
the minimum expenditure problem. Therefore, for any 7,

(p, i)

ﬁTxo >e(p,u) = minﬁTx s.t. u(x) > u

18
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Taking a second order expansion, this gives
_ - _ - 1 . -
pxo—p'xo 2e(p, ) - e(p, i) ~ Dpeqy,iy(F = p) + 5(F = p)' Dyep,n (P = p)
0>~ p) Dyeq,n (@ —p)

where the second line uses the fact that Dye(,,2) = xT Hence, we know that Dze(p 7)) =
Iz

D, xh (p,0) is negative semi-definite. In particular, the dlagonal, pr must be less than

or equal to zero. Hicksian demand curves must slope down. Marshalhan demand

ox;
curves usually do too, but might not when the income effect, a_xyle%, is large.

We can also analyze how the maximizer varies with the parameters. We do this by totally
differentiating the first order condition. Consider an equality constrained problem,

max f(x, 0)s.t. h(x,0) =c.

where x € R", 0 € R®, and ¢ € R™. The optimal x much satisfy the first order condition
and the constraint.

8f ohy
Z:: k&x]

hi(x,0) —c =0

forj=1,..,n,and k =1, ..., m. Suppose 0 changes by d0, let dx and du be the amounts
that x and u have to change by to make the first order conditions still hold. These must
satisfy,

oh & oh
Z 8x]8x{;d £+Z 8x]89 Z;yk( dx 3955 Z 8x;8k9 10 ) Zd#ka_xl; )

8hk Z ohy
d@ =0

where the first equation is for j = 1,...,n and the second is for k = 1,...,m. We have
n + m equations to solve for the n + m unknown dx and du. We can express this system
of equations more compactly using matrices.

D2, f—-Diu"h —(D:m)"\ (dx\ _ (D2 f D2, u"h 6
—Dyh 0 dy Dgh

where D2 f is the n X n matrix of second partial derivatives of f with respect to x, Dx olt Th
is the X s matrix of second partial derivatives of u’h with respect to combinations of x
and 0, etc.

Whether expressed using matrices or not, this system of equations is a bit unwieldy.

Fortunately in most applications, there will be some simplification. For example, if the
19
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constraints do not depend on 0, we simply get

dx _
= = (DL DL f.
——

=Dgx
In other situations, the constraints might depend on 0, but s, m, and/or n might just be
one or two.
A similar result holds with inequality constraints, except at © where changing 0 changes
which constraints bind or do not. Such situations are rare, so we will not worry about
them.

Example 4.2 (Production theory). Consider a competitive multiple product firm facing
output prices p € RF and input prices w € R". The firm’s profits as function of prices
i
) n(p,w)znyu}xpTy—wa st. y—f(x) <0.
The first order conditions are /
pT = AT =0
~w! + ATD, f =0
y=fx)=0
Total differentiating with respect to p, holding w constant gives
dpT —dAT =0
dATD, f +dx"D2 AT f =0
dy — Dy fdx =0
Combining we can get
dpTdy = -dx"D2 AT fdx.
Notice that if we assume the constraint binds and substitute it into the objective

function, then the second order condition for this problem is that vT D2,p” fv < 0 for
all v. If the second order condition holds, then we must have

—~dxTD2 AT fdx > 0.
Therefor dpTdy > 0. Increasing output prices increases output.

As an exercise, you could use similar reasoning to show that 4 wldx < 0. Increasing
input prices decreases input demand.

ArpPENDIX A. NOTATION

e R is the set of real numbers R” is the set of vectors of n real numbers.

e x € RFisread “x in R¥” and means that x is vector of k real numbers.

e f:R">R means f is a function from R" to R. That is, f’s argument is an n-tuple
of real numbers and its output is a single real number.

e I C R" means U is a subset of R".

e When convenient we will treat x € R¥ as a k x 1 matrix, so w
20
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e Ns(x) is a 6 neighborhood of x, meaning the set of points within 6 distance of x.
For x € R", we will use Euclidean distance, so that N(x) is the set of y € R" such

that \/Zle(xi - yi)? < 0.

APrPENDIX B. REVIEW OF DERIVATIVES

Partial and directional derivatives were discussed on the summer math review, so we
will just briefly restate their definitions and some key facts here.

Definition B.1. Let f : R"—R. The ith partial derivative of f is

J v, X0i +h, . X0n) —
_f(x()) — lim f(xo1, ..., x0i + Xon) f(xo).
ox; h—0 h

The ith partial derivative tells you how much the function changes as its ith argument
changes.

Definition B.2. Let f : R"—RK, and let v € R” the directional derivative in direction v at
X is
f(x+av) - f(x)

a

df (x;v) = lim
a—0

where a € R is a scalar.
An important result relating partial to directional derivatives is the following.

Theorem B.1. Let f : R"—=R and suppose its partial derivatives exist and are continuous in a
neighborhood of xo. Then

n

0
df (x;v) = Z Ufa_i.(x‘))

i=1
in this case we will say that f is differentiable at x.

It is convenient to gather partial derivatives of a function into a matrix. For a function
f : R"—>R, we will gather its partial derivatives into a 1 X n matrix,

Dfe=(£w - #Zw).

We will simply call this matrix the derivative of f at x. This helps reduce notation because
for example we can write

n

0
df (x;v) = Z via—i(xo) =D fyv.

i=1

Similarly, we can define second and higher order partial and directional derivatives.
Definition B.3. Let f : R"—R. The ijth partial second derivative of f is

of of
92 5=(X01, .., X0j + 1, ... X0n) — 55 (X0)
f (x0) = lim oxi / ! oxi )

Jdx;0x; h—0 h
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Definition B.4. Let f : R” —RF and let v, w € R" the directional derivative in directions
v and w at x is

d + ; —d ;
42 f(x; 0, w) = lim L+ aWi0) 7 df(xi0)
a—0 a
where a € R is a scalar.

Theorem B.2. Let f : R"—=R and suppose its first and second partial derivatives exist and are
continuous in a neighborhood of xo. Then

n n aZf
240 - ) ;
d°f(x;v,w) = ]Z:; ; v; Sxi0%; (x0)w;
in this case we will say that f is twice differentiable at xo. Additionally, if f is twice differentiable,

azf _ azf
then axiax]‘ - axerx]-'

We can gather the second partials of f into an n X n matrix,

2f .. Pf
Ix? Idx10xy,
2 . . .
D fx = : . : ’
P f Pf2
ox10x, ox,

and then write d? f (x;v, w) = w! D? fyw. D?fy is also called the Hessian of f.
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