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Today’s lecture is about optimization. Useful references are chapters 1-5 of Dixit (1990),
chapters 16-19 of Simon and Blume (1994).

We typicallymodel economic agents as optimizing some objective function. Consumers
maximize utility.

Example 0.1. A consumer with income y chooses a bundle of goods x1, ..., xn with
prices p1, ..., pn to maximize utility u(x).

max
x1 ,...,xn

u(x1, ..., xn) s.t. p1x1 + · · · + pn xn ≤ y

Firms maximize profits.

Example 0.2. A firm produces a good y with price p, and uses inputs x ∈ Rk with
prices w ∈ Rk . The firm’s production function is f : Rk

→R. The firm’s problem is

max
y ,x

p y − wT x s.t. f (x) � y

1

1. Unconstrained optimization

Although most economic optimization problems involve some constraints it is useful
to begin by studying unconstrained optimization problems. There are two reasons for
this. One is that the results are somewhat simpler and easier to understand without
constraints. The second is that we will sometimes encounter unconstrained problems.
For example, we can substitute the constraint in the firm’s problem from example 0.2 to
obtain an unconstrained problem.

max
x

p f (x) − wT x

1.1. Notation and definitions. An optimization problem refers to finding the maximum
or minimum of a function, perhaps subject to some constraints. In economics, the most
common optimization problems are utility maximization and profit maximization. Be-
cause of this, we will state most of our definitions and results for maximization problems.

1This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License
1See appendix A if any notation is unclear.
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OPTIMIZATION

Of course, we could just aswell state each definition and result for aminimization problem
by reversing the direction of most inequalities.

We will start by examining generic unconstrained optimization problems of the form

max
x

f (x)

where x ∈ Rn and f : Rn
→R. To allow for the possibility that the domain of f is not all of

Rn , we will let U ⊆ Rn , be the domain, and write maxx∈U f (x) for the maximum of f on
U.

If F∗ � maxx f (x), we mean that f (x) ≤ F∗ for all x and f (x∗) � F∗ for some x∗.

Definition 1.1. F∗ � maxx∈U f (x) is the maximum of f on U if f (x) ≤ F∗ for all x and
f (x∗) � F∗ for some x∗.

There may be more than one such x∗. We denote the set of all x∗ such that f (x∗) � F∗

by argmaxx∈U f (x) and might write x∗ ∈ argmaxx f (x), or, if we know there is only one
such, x∗, we sometimes write x∗ � argmaxx f (x).

Definition 1.2. x∗ ∈ U is a maximizer of f on U if f (x∗) � maxx∈U f (x). The set of all
maximizers is denoted argmaxx∈U f (x).

Definition 1.3. x∗ ∈ U is a strict maximizer of f if f (x∗) > f (x) for all x , x∗

Definition 1.4. f has a local maximum at x if ∃δ > 0 such that f (y) ≤ f (x) for all y in U
and within δ distance of x (we will use the notation y ∈ Nδ (x)∩U, which could be read y
in a δ neighborhood of x intersected with U). Each such x is called a local maximizer of
f . If f (y) < f (x) for all y , x, y ∈ Nδ (x) ∩U, then we say f has a strict local maximum
at x.

When we want to be explicit about the distinction between local maximum and the
maximum in definition 1.1, we refer to the later as the global maximum.

Example 1.1. Here are some examples of functions from R→R and their maxima and
minima.

(1) f (x) � x2 is minimized at x � 0 with minimum 0.
(2) f (x) � c has minimum and maximum c. Any x is a maximizer.
(3) f (x) � cos(x) has maximum 1 and minimum −1. 2πn for any integer n is a

maximizer.
(4) f (x) � cos(x) + x/2 has no global maximizer or minimizer, but has many local

ones.
A related concept to the maximum is the supremum.

Definition 1.5. The supremum (or least upper bound) of f on U is S is written,

S � sup
x∈U

f (x),

and means that S ≥ f (x) for all x ∈ U and for any A < S there exists xA ∈ U such that
f (xA) > A.
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The main difference between the supremum and maximum is that the supremum can
exist when the maximum does not.

Example 1.2. Let x ∈ R and f (x) � − 1
1+x2 .

Then maxx∈R f (x) does not exist, but
supx∈R f (x) � 0.
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An important fact about real numbers is that if f : Rn
→R is bounded above, i.e. there

exists B ∈ R such that f (x) ≤ B for all x ∈ Rn , then supx∈Rn f (x) exists and is unique.
The infimum is to the minimum as the supremum is to the maximum.

1.2. First order conditions. 2Suppose wewant to maximize f (x). If we are at x and travel
some small distance ∆ in direction v, then we can approximate how much f will change
by its directional derivative, i.e.

f (x + ∆v) ≈ f (x) + d f (x; v)∆.

If there is some direction v with d f (x; v) , 0, then we could take that ∆v or −∆v step and
reach a higher function value. Therefore, if x is a local maximum, then it must be that
d f (x; v) � 0 for all v. From theorem B.1 this is the same as saying ∂ f

∂xi
� 0 for all i.

Theorem 1.1. Let f : Rn
→R, and suppose f has a local maximum x and f is differentiable at x.

Then ∂ f
∂xi

� 0 for i � 1, ..., n.

Proof. The paragraph preceding the theorem is an informal proof. The only detail miss-
ing is some care to ensure that the ≈ is sufficiently accurate. If you are interested,
see the past course notes for details. http://faculty.arts.ubc.ca/pschrimpf/526/
lec10optimization.pdf �

The first order condition is the fact that ∂ f
∂xi

� 0 is a necessary condition for x to be a
local maximizer or minimizer of f .

Definition 1.6. Any point x such that f is differentiable at x and D fx � 0 is call a critical
point of f .

If f is differentiable, f cannot have local minima or maxima (=local extrema) at non-
critical points. f might have a local extrema its critical points, but it does not have to.
Consider f (x) � x3 f ′(0) � 0, but 0 is not a local maximizer or minimizer of F. Similarly,
if f : R2→R, f (x) � x2

1 − x2
2, then the partial derivatives at 0 are 0, but 0 is not a local

minimum or maximum of f .

2This sectionwill use some results on partial and directional derivatives. See appendix B and the summer
math review for reference.
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2. Second order conditions

To determine whether a given critical point is a local minimum or maximum or neither
we can look at the second derivative of the function. Let f : Rn

→R and suppose x∗ is
a critical point. Then ∂ f

∂xi
(x∗) � 0. To see if x∗ is a local maximum, we need to look at

f (x∗ + h) for small h. We could try taking a first order expansion,

f (x∗ + h) ≈ f (x∗) + D fx∗h ,

but we know that D fx∗ � 0, so this expansion is not useful for comparing f (x∗) with
f (x∗ + h).
If f is twice continuously differentiable, we can instead take a second order expansion

of f around x∗.

f (x∗ + v) ≈ f (x∗) + D fx∗v +
1
2

vT D2 fx∗v

where D2 fx∗ is the matrix of f ’s second order partial derivatives. Since x∗ is a critical,
point D fx∗ � 0, so

f (x∗ + v) − f (x∗) ≈
1
2

vT D2 fx∗v.

We can see that x∗ is a local maximum if
1
2

vT D2 fx∗v < 0

for all v , 0. The above inequality will be true if vT D2 fx∗v < 0 for all v , 0. The Hessian,
D2 fx∗ is just some symmetric n by n matrix, and vT D2Fx∗v is a quadratic form in v. This
motivates the following definition.

Definition 2.1. Let A be a symmetric matrix, then A is
• Negative definite if xTAx < 0 for all x , 0
• Negative semi-definite if xTAx ≤ 0 for all x , 0
• Positive definite if xTAx > 0 for all x , 0
• Positive semi-definite if xTAx ≥ 0 for all x , 0
• Indefinite if ∃ x1 s.t. xT

1 Ax1 > 0 and some other x2 such that xT
2 Ax2 < 0.

Later, we will derive some conditions on A that ensure it is negative (semi-)definite. For
now, just observe that if D2Fx∗ is negative semi-definite, then x∗must be a local maximum.
If D2Fx∗ is negative definite, then x∗ is a strict local maximum. The following theorem
restates the results of this discussion.

Theorem 2.1. Let F : Rn
→R be twice continuously differentiable and let x∗ be a critical point. If

(1) The Hessian, D2Fx∗ , is negative definite, then x∗ is a strict local maximizer.
(2) The Hessian, D2Fx∗ , is positive definite, then x∗ is a strict local minimizer.
(3) The Hessian, D2Fx∗ , is indefinite, x∗ is neither a local min nor a local max.
(4) The Hessian is positive or negative semi-definite, then x∗ could be a local maximum,

minimum, or neither.

Proof. The main idea of the proof is contained in the discussion preceding the theorem.
The only tricky part is carefully showing that our approximation is good enough. �
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When the Hessian is not positive definite, negative definite, or indefinite, the result of
this theorem is ambiguous. Let’s go over some examples of this case.

Example 2.1. F : R→R, F(x) � x4. The
first order condition is 4x3 � 0, so x∗ � 0
is the only critical point. The Hessian is
F′′(x) � 12x2 � 0 at x∗. However, x4 has a
strict local minimum at 0.
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Example 2.2. F : R2→R, F(x1, x2) � −x2
1. The first order condition is DFx � (−2x1, 0) �

0, so the x∗1 � 0, x∗2 ∈ R are all critical points. The Hessian is

D2Fx �

(
−2 0
0 0

)
This is negative semi-definite because hT D2Fx h � −2h2

1 ≤ 0. Also, graphing the
function would make it clear that x∗1 � 0, x∗2 ∈ R are all (non-strict) local maxima.

Example 2.3. F : R2→R, F(x1, x2) � −x2
1 + x4

2. The first order condition is DFx �

(−2x1, 4x3
2) � 0, so the x∗ � (0, 0) is a critical point. The Hessian is

D2Fx �

(
−2 0
0 12x2

2

)
This is negative semi-definite at 0 because hT D2F0h � −2h2

1 ≤ 0. However, 0 is not a
localmaximumbecause F(0, x2) > F(0, 0) for any x2 , 0. 0 is also not a localminimum
because F(x1, 0) < F(0, 0) for all x1 , 0.

In eachof these examples, the secondorder condition is inconclusive because hT D2Fx∗h � 0
for some h. In these cases we could determine whether x∗ is a local maximum, local
minimum, or neither by either looking at higher derivatives of F at x∗, or look at D2Fx for
all x in a neighborhood of x∗. We will not often encounter cases where the second order
condition is inconclusive, so we will not study these possibilities in detail.

Example 2.4 (Competitive multi-product firm). Suppose a firm has produces k goods
using n inputs with production function f : Rn

→Rk . The prices of the goods are p,
and the prices of the inputs are w, so that the firm’s profits are

Π(x) � pT f (x) − wT x.
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The firm chooses x to maximize profits.

max
x

pT f (x) − wT x

The first order condition is
pT D fx∗ − w � 0.

or without using matrices,
k∑

j�1
p j
∂ f j

∂xi
(x∗) � wi

for i � 1, ..., n.
The second order condition is that

D2[pT f ]x∗ �

*.....
,

∑k
j�1 p j

∂2 f j

∂x2
1

(x∗) · · ·
∑k

j�1 p j
∂2 f j

∂x1∂xn
(x∗)

...
...∑k

j�1 p j
∂2 f j

∂x1∂xn
(x∗) · · ·

∑k
j�1 p j

∂2 f j

∂x2
n

(x∗)

+/////
-

must be negative semidefinite.a

aThere is some awkwardness in the notation for the second derivative of a function from Rn
→Rk when

k > 1. The first partial derivatives can be arranged in an k × n matrix. There are then k × n × n second
partial derivatives. When k � 1 it is convenient to write these in an n × n matrix. When k > 1, one
could arrange the second partial derivates in 3-d array of dimension k × n × n, or one could argue
that an kn × n matrix makes sense. These higher order derivatives are called tensors and physicists
and mathematicians do have some notation for working with them. However, tensors do not come up
that often in economics. Moreover, we can usually avoid needing any such notation by rearranging
some operations. In the above example, f : Rn

→Rk , so D2 f should be avoided (especially if we
combine it with other matrix and vector algebra), but pT f (x) is a function from Rn to R, so D2[pT f ] is
unambiguously an n × n matrix.

3. Constrained optimization

To begin our study of constrained optimization, let’s consider a consumer in an economy
with two goods.

Example 3.1. Let x1 and x2 be goods with prices p1 and p2. The consumer has income
y. The consumer’s problem is

max
x1 ,x2

u(x1, x2) s.t. p1x1 + p2x2 ≤ y

In economics 101, you probably analyzed this problem graphically by drawing in-
difference curves and the budget set, as in figure 1. In this figure, the curved lines
are indifference curves. That is, they are regions where utility is constant. So going
outward from the axis they show all (x1, x2) such that u(x1, x2) � c1, u(x1, x2) � c2,
u(x1, x2) � c3, and u(x1, x2) � c4 with c1 < c2 < c3 < c4. The diagonal line is the
budget constraint. All points below this line satisfy the constraint p1x1 + p2x2 ≤ y.
The optimal x1, x2 is the point x∗ where an indifference curve is tangent to the budget
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line. The slope of the budget line is − p1
p2
. The slope of the indifference curve can be

found by implicitly differentiating,
∂u
∂x1

(x∗)dx1 +
∂u
∂x2

(x∗)dx2 �0

dx2
dx1

(x∗) �
−
∂u
∂x1
∂u
∂x2

So the optimum satisfies
∂u
∂x1
∂u
∂x2

�
p1

p2
.

The ratio of marginal utilities equals the ratio of marginal prices. Rearranging, we can
also say that

∂u
∂x1

p1
�

∂u
∂x2

p2
.

Suppose we have a small amount of additional income ∆. If we spend this on x1, we

would get∆/p1 more of x1, whichwould increase our utility by
∂u
∂x1
p1
∆. At the optimum,

the marginal utility from spending additional income on either good should be the
same. Let’s call this marginal utility of income µ, then we have

µ �

∂u
∂x1

p1
�

∂u
∂x2

p2
or

∂u
∂x1
− µp1 �0

∂u
∂x2
− µp2 �0.

This is the standard first order condition for a constrained optimization problem.
Now, let’s look at a generic maximization problem with equality constraints.

max f (x) s.t. h(x) � c

where f : Rn
→R and h : Rn

→Rm . As in the unconstrained case, consider a small
perturbation of x by some small v. The function value is then approximately,

f (x + v) ≈ f (x) + D fxv

and the constraint value is
h(x + v) ≈ h(x) + Dhxv

x + v will satisfy the constraint only if Dhx v � 0. Thus, x is a constrained local maximum
if for all v such that Dhx v � 0 we also have D fx v � 0.
Now, we want to express this condition in terms of Lagrange multipliers. Remember

that Dhx is an m × n matrix of partial derivatives, and D fx is a 1 × n row vector of partial
7
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Figure 1. Indifference curves

derivatives. If n � 2 and m � 1 this condition can be written as

∂h
∂x1

(x)v1 +
∂h
∂x2

(x)v2 � 0

implies
∂ f
∂x1

(x)v1 +
∂ f
∂x2

(x)v2 � 0.

Solving the first of these equations for v2, substituting into the second and rearranging
gives

∂ f
∂x1

(x)
∂h
∂x1

(x)
�

∂ f
∂x2

(x)
∂h
∂x2

(x)
,

which as in the consumer example above, we can rewrite as

∂ f
∂x1
− µ

∂h
∂x1

�0

∂ f
∂x2
− µ

∂h
∂x2

�0.

for some constant µ. Similar reasoning would show that for any n and m � 1, if for all v
such that Dhx v � 0 we also have D fx v � 0, then it is also true that there exists µ such that

∂ f
∂xi
− µ

∂h
∂xi

� 0

for i � 1, ..., n. Equivalently, using matrix notation D fx � µDhx . Note that conversely, if
such a µ exists, then trivially for any v with Dhxv � 0, we have D fx v � µDhx v � 0.
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When there are multiple constraints, i.e. m > 1, it would be reasonable to guess that
Dhx v � 0 implies D fx v � 0 if and only if there exists µ ∈ Rm such that

∂ f
∂xi
−

m∑
j�1
µ j
∂h j

∂xi
�0

or in matrix notation D fx � µT Dhx . This is indeed true. It is tedious to show using
algebra, but will be easy to show later using some results from linear algebra.

A heuristic geometric argument supporting the previous claims is as follows. Imagine
the level sets or contour lines of h(·). The feasible points that satisfy the constraint lie
on the contour line with h(x) � 0. Similarly imagine the contour lines of f (·). If x∗ is
a constrained maximizer, then as we move alone the contour line h(·) � 0, we must stay
on the same contour line (or set if f is flat) of f . In other words, the contour lines of
h and f must be parallel at x∗. Gradients give the direction of steepest ascent and are
perpendicular to contour lines. Therefore, if the gradients of h and f are parallel, then so
are the contour lines. Gradients being parallel just means that they should be multiples
of one another, i.e. D fx � µT Dhx for some µT .
The following theorem formally states the preceding result.

Theorem 3.1 (First order condition for maximization with equality constraints). Let f :
Rn
→R and h : Rn

→Rm be continuously differentiable. Suppose x∗ is a constrained localmaximizer
of f subject to h(x) � c. Also assume that Dhx∗ has rank m. Then there exists µ∗ ∈ Rm such that
(x∗, µ∗) is a critical point of the Lagrangian,

L(x , µ) � f (x) − µT (h(x) − c).

i.e.
∂L
∂xi

(x∗, µ∗) �
∂ f
∂xi
− µ∗T

∂h
∂xi

(x∗) � 0

∂L
∂µ j

(x∗, µ∗) �h(x∗) − c � 0

for i � 1, ..., n and j � 1, ...,m.

The assumption that Dhx∗ has rank m is needed to make sure that we don’t divide
by zero when defining the Lagrange multipliers. When there is a single constraint, it
simply says that at least one of the partial derivatives of the constraint is non-zero. This
assumption is called the non-degenerate constraint qualification. It is rarely an issue for
equality constraints, but can sometimes fail as in the following examples.

Exercise 3.1. (1) Solve the problem:

max
x
α1 log x1 + α2 log x2 s.t. (p1x1 + p2x2 − y)3 � 0

What goes wrong? How does it differ from the following problem:

max
x
α1 log x1 + α2 log x2 s.t. (p1x1 + p2x2 − y) � 0

9
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(2) Solve the problem:

max
x1 ,x2

x1 + x2 s.t. x2
1 + x2

2 � 0

3.1. Lagrange multipliers as shadow prices. Recall that in our example of consumer
choice, the Lagrange multiplier could be interpreted as the marginal utility of income. A
similar interpretation will always apply.

Consider a constrained maximization problem,

max
x

f (x) s.t. h(x) � c

From 3.1, the first order conditions are

D fx∗ − µ
T Dhx∗ �0

h(x∗) − c �0.

What happens to x∗ and f (x∗) if c changes? Let x∗(c) denote the maximizer as a function
of c. Differentiating the constraint with respect to c shows that

Dhx∗(c)Dx∗c � I

By the chain rule,
Dc

(
f (x∗(c))

)
� D fx∗(c)Dx∗c .

Using the first order condition to substitute for D fx∗(c), we have

Dc
(

f (x∗(c))
)
�µT Dhx∗(c)Dx∗c
�µT

Thus, the multiplier, µ, is the derivative of the maximized function with respect to c. In
economic terms, the multiplier is the marginal value of increasing the constraint. Because
of this µ j is called the shadow price of c j .

Example 3.2 (Cobb-Douglas utility ). Consider the consumer’s problem in example
3.1 with Cobb-Douglas utility,

max
x1 ,x2

xα11 xα22 s.t. p1x1 + p2x2 � y

The first order conditions are

α1xα1−11 xα22 − p1µ � 0

xα11 α2xα2−12 − p2µ � 0
p1x1 + p2x2 − y � 0

Solving for x1 and x2 yields

x1 �
α1

α1 + α2
y
p1

x2 �
α2

α1 + α2
y
p2
.
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The expenditure share of each good p j x j
y , is constant with respect to income. Many

economists, going back to Engel (1857) have studied how expenditure shares vary
with income. See Lewbel (2008) for a brief review and additional references.

If we solve for µ, we find that

µ �
αα11 α

α2
2

(α1 + α2)α1+α2
yα1+α2−1

pα11 pα22
µ is the marginal utility of income in this model. As an exercise you may want to
verify that if we were to take a monotonic transformation of the utility function (such
as log(xα11 xα22 ) or (xα11 xα22 )β) and re-solve the model, then we would obtain the same
demand functions, but a different marginal utility of income.

3.2. Inequality constraints. Now let’s consider an inequality instead of equality con-
straint.

max
x

f (x) s.t. g(x) ≤ b.

When the constraints binds, i.e. g(x∗) � b, the situation is exactly the same as with an
equality constraint. However, the constraints do not necessarily bind at a local maximum,
so we must allow for that possibility.

Suppose x∗ is a constrained local maximum. To begin with, let’s consider a simplified
case where there is only one constraint, i.e. g : Rn

→R. If the constraint does not bind,
then for small changes to x∗, the constraint will still not bind. In other words, locally
it as though we have an unconstrained problem. Then, as in our earlier analysis of
unconstrained problems, it must be that D fx∗ � 0. Now, suppose the constraint does
bind. Consider a small change in x, v. Since x∗ is a local maximum, it must be that if
f (x∗ + v) > f (x∗), then x∗ + v must violate the constraint, g(x∗ + v) > b. Taking first order
expansions, we can say that if D fx∗v > 0, then D gx∗v > 0. Thiswill be true if D fx∗ � λD gx∗

for some λ > 0. Note that the sign of the multiplier λ matters here.
To summarize the results of the previous paragraph. If x∗ is a constrained local max-

imum, then there exists λ ≥ 0 such that D fx∗ − λD gx∗ � 0. Furthermore if λ > 0, then
g(x∗) � b. If g(x∗) < b, then λ � 0 (it is also possible, but rare for both λ � 0 and g(x∗) � b).
This situation where if one inequality is strict and then another holds with equality and
vice versa is called a complementary slackness condition.

Essentially the same result holds with multiple inequality constraints.

Theorem 3.2 (First order condition for maximization with inequality constraints). Let
f : Rn

→R and g : Rn
→Rm be continuously differentiable. Suppose x∗ is a local maximizer of f

subject to g(x) ≤ b. Suppose that the first k ≤ m constraints, bind

g j (x∗) � b j

for j � 1...k and that the Jacobian for these constraints,

*...
,

∂g1
∂x1

· · ·
∂g1
∂xn

...
...

∂gk
∂x1

· · ·
∂gk
∂xn

+///
-
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has rank k. Then, there exists λ∗ ∈ Rm such that for

L(x , λ) � f (x) − λT (g(x) − b).

we have
∂L
∂xi

(x∗, λ∗) �
∂ f
∂xi
− λ∗T

∂g
∂xi

(x∗) � 0

λ∗j
∂L
∂λ j

(x∗, λ∗) �λ∗j
(
g j (x∗) − b

)
� 0

λ∗j ≥ 0

g j (x∗) ≤ b j

for i � 1, ..., n and j � 1, ...,m. Moreover for each j at least if λ∗j > 0 then g j (x∗) � b j and if
g j (x∗) < b, then λ∗j � 0 (complementary slackness).

Some care needs to be taken regarding the sign of the multipliers and the setup of
the problem. Given the setup of our problem, maxx f (x) s.t. g(x) ≤ b, if we write the
Lagrangian as L(x , λ) � f (x) − λT (g(x) − b), then the λ j ≥ 0. If we instead wrote the
Lagrangian as L(x , λ) � f (x) + λT (g(x) − b), then we would get negative multipliers.
If we have a minimization problem, minx f (x) s.t. g(x) ≤ b, the situation is reversed.
f (x)−λT (g(x)− b) leads to negative multipliers, and f (x)+λT (g(x)− b) leads to positive
multipliers. Reversing the direction of the inequality in the constraint, i.e. g(x) ≥ b
instead of g(x) ≤ b, also switches the sign of the multipliers. Generally it is not very
important if you end up with multipliers with the “wrong” sign. You will still end up
with the same solution for x. The sign of the multiplier does matter for whether it is the
shadow price of b or −b.
To solve the first order conditions of an inequality constrained maximization problem,

you would first determine or guess which constraints do and do not bind. Then you
would impose λ j � 0 for the non-binding constraints and solve for x and the remaining
components λ. If the resulting x do lead to the constraints not binding that you guessed
not binding, then that x is a possible local maximum. To find all possible local maxima,
you would have to repeat this for all possible combinations of constraints binding or not.
There 2m such possibilities, so this process can be tedious.

Example 3.3. Let’s solve

max
x

x1x2 s.t. x2
1 + 2x2

2 ≤ 3

2x2
1 + x2

2 ≤ 3

The Lagrangian is

L(x , λ) � x1x2 − λ1(x2
1 + 2x2

2 − 3) − λ2(2x2
1 + x2

2 − 3)

12
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The first order conditions are

0 �x2 − 2λ1x1 − 4λ2x1

0 �x1 − 4λ1x2 − 2λ2x2

0 �λ1(x2
1 + 2x2

2 − 3)

0 �λ2(2x2
1 + x2

2 − 3)

Now, wemust guess which constraints bind. Since the problem is symmetric in x1 and
x2, we only need to check three possibilities instead of all four. The three possibilities
are neither constraint binds, both bind, or one binds and one does not.

If neither constraint binds, then λ1 � λ2 � 0, and the first order conditions imply
x1 � x2 � 0. This results in a function value of 0. This is feasible, but it is not the
maximum since for example, small positive x1 and x2 would also be feasible and give
a higher function value.

Instead, suppose both constraints bind. Then the solutions to x2
1 + 2x2

2 � 3 and
2x2

1 + x2
2 � 3 are x1 � ±1 and x2 � ±1. Substituting into the first order condition and

solving for λ1 and λ2 gives

0 �1 − 2λ1 − 4λ2

0 �1 − 4λ1 − 2λ2

1
6
�λ1 � λ2

Both λ1 and λ2 are positive, so complementary slackness is satisfied.
Finally, let’s consider the case where the first constraint binds but not the second.

In this case λ2 � 0, and taking the ratio of the first order conditions gives
x2
x1

�
1
2

x1
x2

or x2
2 �

1
2x2

1. Substituting this into the first constraint yields x2
1 + x2

1 � 3 , so x1 �
√
3/2,

and x2 �
√
3/4. However, then 2x2

1+x2
1 � 3+3/4 > 3. The second constraint is violated,

so this cannot be the solution.
Fortunately, the economics of a problem often suggest which constraints will bind, and
you rarely actually need to investigate all 2m possibilities.

Example 3.4 (Quasi-linear preferences). A consumer’s choice of some good(s) of inter-
est x and spendingonall other goods z is oftenmodeledusingquasi-linearpreferences.
U (x , z) � u(x) + z. The consumer’s problem is

max
x ,z

u(x) + z s.t. px + z ≤ y

x ≥ 0
z ≥ 0

13
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Let λ, µx , and µz be the multipliers on the constraints. The first order conditions are

u′(x) − λp + µx �0
1 − λ + µz �0

along with the complementary slackness conditions

λ ≥0 px + z ≤y

µx ≥0 x ≥ 0
µz ≥0 z ≥ 0

There are 23 � 8 possible combinations of constraints binding or not. However, we
can eliminate half of these possibilities by observing that if the budget constraint is
slack, px + z < y, then increasing z is feasible and increases the objective function.
Therefore, the budget constraint must bind, px + z � y and λ > 0. There are four
remaining possibilities. Having 0 � x � z is not possible because then the budget
constraint would not bind. This leaves three possibilities

(1) 0 < x and 0 < z. That implies µx � µz � 0. Rearranging the first order
conditions gives that u′(x) � p and from the budget constraint z � y − px.
Depending on u, p, and y, this could be the solution.

(2) 0 � x and 0 < z. That implies that µz � 0 and µx > 0. From the budget
constraint, z � y. From the first order conditions we have u′(0) � p + µx . Since
µx must be positive, this equation requires that u′(0) < p. This also could be
the solution depending on u, p, and y

(3) 0 < x and 0 � z. That implies that µx � 0. From the budget constraint, x � y/p.
Combining the first order conditions to eliminate λ gives 1+µz �

u′(y/p)
p . Since

µz > 0, this equation requires that u′(y/p) > p. This also could be the solution
depending on u, p, and y.

Exercise 3.2. Show that replacing the problem

max
x

f (x) s..t g(x) ≤ b.

with an equality constrained problem with slack variables s,

max
x ,s

f (x) s..t g(x) − s � b , s ≥ 0

leads to the same conclusions as theorem 3.2

3.3. Second order conditions. As with unconstrained optimization, the first order con-
ditions from the previous section only give a necessary condition for x∗ to be a local
maximum of f (x) subject to some constraints. To verify that a given x∗ that solves the first
order condition is a local maximum, we must look at the second order condition. As in

14
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the unconstrained case, we can take a second order expansion of f (x) around x∗.

f (x∗ + v) − f (x∗) ≈D fx∗v +
1
2

vT D2 fx∗v

≈
1
2

vT D2 fx∗v

This is a constrained problem, so any x∗ + v must satisfy the constraints as well. As before,
what will really matter are the equality constraints and binding inequality constraints. To
simplify notation, let’s just work with equality constraints, say h(x) � c. We can take a
first order expansion of h around x∗ to get

h(x∗ + v) ≈ h(x∗) + Dhx∗v � c.

Then v satisfies the constraints if

h(x∗) + Dhx∗v �c

Dhx∗v �0

Thus, x∗ is a local maximizer of f subject to h(x) � c if

vT D2 fx∗v ≤ 0

for all v such that that Dhx∗v � 0. The following theorem precisely states the result of this
discussion.

Theorem 3.3 (Second order condition for constrainedmaximization). Let f : U→R be twice
continuously differentiable on U, and h : U→Rl and g : U→Rm be continuously differentiable
on U ⊆ Rn . Suppose x∗ ∈ interior(U) and there exists µ∗ ∈ Rl and λ∗ ∈ Rm such that for

L(x , λ, µ) � f (x) − λT (g(x) − b) − µT (h(x) − c).

we have

∂L
∂xi

(x∗, λ∗) �
∂ f
∂xi
− λ∗T

∂g
∂xi

(x∗) − µ∗T
∂h
∂xi

(x∗) � 0

∂L
∂µ`

(x∗, λ∗) �h` (x∗) − c � 0

λ∗j
∂L
∂λ j

(x∗, λ∗) �λ∗j
(
g(x∗) − c

)
� 0

λ∗j ≥ 0

g(x∗) ≤ b
15
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Let B be the matrix of the derivatives of the binding constraints evaluated at x∗,

B �

*.............
,

∂h1
∂x1

· · ·
∂h1
∂xn

...
...

∂hl
∂x1

· · ·
∂hl
∂xn

∂g1
∂x1

· · ·
∂g1
∂xn

...
...

∂gk
∂x1

· · ·
∂gk
∂xn

+/////////////
-

If
vT D2 fx∗v < 0

for all v , 0 such that Bv � 0, then x∗ is a strict local constrained maximizer for f subject to
h(x) � c and g(x) ≤ b.

Recall from above that an n by n matrix, A, is negative definite if xTAx < 0 for all x , 0.
Similarly, we say that A is negative definite on the null space3 of B if xTAx < 0 for all
x ∈ N (B) \ {0}. Thus, the second order condition for constrained optimization could be
stated as saying that the Hessian of the objective function must be negative definite on the
null space of the Jacobian of the binding constraints. The proof is similar to the proof of
the second order condition for unconstrained optimization, so we will omit it.

4. Comparative statics

Often, amaximization problemwill involve some parameters. For example, a consumer
with Cobb-Douglas utility solves:

max
x1 ,x2

xα11 xα22 s.t. p1x1 + p2x2 � y.

The solution to this problem depends α1, α2, p1, p2, and y. We are often interested in how
the solution depends on these parameters. In particular, we might be interested in the
maximized value function (which in this example is the indirect utility function)

v(p1, p2, y , α1, α2) � max
x1 ,x2

xα11 xα22 s.t. p1x1 + p2x2 � y.

Wemight also be interested in the maximizers x∗1(p1, p2, y , α1, α2) and x∗2(p1, p2, y , α1, α2)
(which in this example are the demand functions).

4.1. Envelope theorem. The envelope theorem tells us about the derivatives of the max-
imum value function. Suppose we have an objective function that depends on some
parameters θ. Define the value function as

v(θ) � max
x

f (x , θ) s.t. h(x) � c.

Let x∗(θ) denote the maximizer as function of θ, i.e.

x∗(θ) � argmax
x

f (x , θ) s.t. h(x) � c.

3The null space of an m × n matrix B is the set of all x ∈ Rn such that Bx � 0. We will discuss null spaces
in more detail later in the course.
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By definition v(θ) � f (x∗(θ), θ). Applying the chain rule we can calculate the derivative
of v. For simplicity, we will treat x and θ as scalars, but the same calculations work when
they are vectors.

dv
dθ

�
∂ f
∂θ

(x∗(θ), θ) +
∂ f
∂x

(x∗(θ), θ)
dx∗

dθ
(θ)

From the first order condition, we know that
∂ f
∂x

(x∗(θ), θ)
dx∗

dθ
� µ

∂h
∂x

(x∗(θ))
dx∗

dθ
.

However, since x∗(θ) is a constrained maximum for each θ, it must be that h(x∗(θ)) � c
for each θ. Therefore,

0 �
d

dθ
h(x∗(θ)) �

∂h
∂x

(x∗(θ))
dx∗

dθ
� 0.

Thus, we can conclude that
dv
dθ

�
∂ f
∂θ

(x∗(θ), θ).

More generally, you might also have parameters in the constraint,

v(θ) � max
x

f (x , θ) s.t. h(x , θ) � c.

Following the same steps as above, you can show that
dv
dθ

�
∂ f
∂θ
− µ

∂h
∂θ

�
∂L
∂θ
.

Note that this result also covers the previous case where the constraint did not depend on
θ. In that case, ∂h

∂θ � 0 and we are left with just dv
dθ �

∂ f
∂θ .

The following theorem summarizes the above discussion.

Theorem 4.1 (Envelope). Let f : Rn+k
→R and h : Rn+k

→Rm be continuously differentiable.
Define

v(θ) � max
x

f (x , θ) s.t. h(x , θ) � c

where x ∈ Rn and θ ∈ Rk . Then

Dθvθ � Dθ fx∗ ,θ − µ
T Dθhx∗ ,θ

where µ are the Lagrange multipliers from theorem 3.1, Dθ fx∗ ,θ denotes the 1× k matrix of partial
derivatives of f with respect to θ evaluated at (x∗, θ) , and Dθhx∗ ,θ denotes the m × k matrix of
partial derivatives of f with respect to θ evaluated at (x∗, θ).

Example 4.1 (Consumer demand). Some of the core results of consumer theory can
be shown as simple consequences of the envelope theorem. Consider a consumer
choosing goods x ∈ Rn with prices p and income y. Define

v(p , y) � max
x

u(x) s.t. pT x − y ≤ 0.

17
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In this context, v is called the indirect utility function. From the envelope theorem,
∂v
∂pi

� − µx∗i (p , y)

∂v
∂y

�µ

Taking the ratio we have a relationship between the (Marshallian) demand function,
x∗, and the indirect utility function,

x∗i (p , y) �
−
∂v
∂pi

∂v
∂y

.

This is known as Roy’s identity.
Now consider the mirror problem of minimizing expenditure given a target utility

level,
e (p , ū) � min

x
pT x s.t. u(x) ≥ ū

In general, e is a maximum value function, but in this particular context, it is the
consumer’s expenditure function. Using the envelope theorem again,

∂e
∂pi

(p , ū) �xh
i (p , ū)

where xh
i (p , ū) is the constrained minimizer. It is the Hicksian (or compensated)

demand function.
Finally, using the fact that xh

i (p , ū) � x∗i (p , e (p , ū)) and differentiating with respect
to pk gives Slutsky’s equation.

∂xh
i

∂pk
�
∂x∗i
∂pk

+
∂x∗i
∂y

∂e
∂pk

�
∂x∗i
∂pk

+
∂x∗i
∂y

x∗k

Slutsky’s equation is useful because we can determine the sign of some of these
derivatives. From above we know that

∂e
∂pi

(p , ū) �xh
i (p , ū)

so
∂xh

i (p , ū)
∂p j

�
∂2e

∂p j∂pi
(p , ū)

If we fix p and x0 � xh (p , ū), we know that u(x0) ≥ ū, so x0 satisfies the contraint in
the minimum expenditure problem. Therefore, for any p̃,

p̃T x0 ≥ e (p̃ , ū) � min
x

p̃T x s.t. u(x) ≥ ū

18
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Taking a second order expansion, this gives

p̃T x0 − pT x0 ≥e (p̃ , ū) − e (p , ū) ≈ Dp e(p ,ū) (p̃ − p) +
1
2

(p̃ − p)T D2
p e(p ,ū) (p̃ − p)

0 ≥(p̃ − p)T D2
p e(p ,ū) (p̃ − p)

where the second line uses the fact that Dpe(p ,ū) � xT
0 . Hence, we know that D2

pe(p ,ū) �

Dp xh
(p ,ū) is negative semi-definite. In particular, the diagonal, ∂xh

i
∂pi

, must be less than
or equal to zero. Hicksian demand curves must slope down. Marshallian demand
curves usually do too, but might not when the income effect, ∂x∗i

∂y x∗i , is large.

We can also analyze how themaximizer varieswith theparameters. Wedo this by totally
differentiating the first order condition. Consider an equality constrained problem,

max
x

f (x , θ) s.t. h(x , θ) � c.

where x ∈ Rn , θ ∈ Rs , and c ∈ Rm . The optimal x much satisfy the first order condition
and the constraint.

∂ f
∂x j
−

m∑
k�1

µk
∂hk

∂x j
�0

hk (x , θ) − c �0

for j � 1, ..., n, and k � 1, ...,m. Suppose θ changes by dθ, let dx and dµ be the amounts
that x and µ have to change by to make the first order conditions still hold. These must
satisfy,

n∑
`�1

∂2 f
∂x j∂x`

dx` +
s∑

r�1

∂ f
∂x j∂θr

dθr −

m∑
k�1

µk *
,

n∑
`�1

∂hk

∂x j∂x`
dx` +

s∑
r�1

∂hk

∂x j∂θr
dθr+

-
−

m∑
k�1

dµk
∂hk

∂x j
�0

n∑
`�1

∂hk

∂x`
dx` +

s∑
r�1

∂hk

∂θr
dθr �0

where the first equation is for j � 1, ..., n and the second is for k � 1, ...,m. We have
n + m equations to solve for the n + m unknown dx and dµ. We can express this system
of equations more compactly using matrices.(

D2
xx f − D2

xxµ
T h −(Dxh)T

−Dx h 0

) (
dx
dµ

)
� −

(
D2

xθ f − D2
xθµ

T h
−Dθh

)
dθ

where D2
xx f is the n×n matrix of second partial derivatives of f with respect to x, D2

xθµ
T h

is the n × s matrix of second partial derivatives of µT h with respect to combinations of x
and θ, etc.
Whether expressed using matrices or not, this system of equations is a bit unwieldy.

Fortunately in most applications, there will be some simplification. For example, if the
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constraints do not depend on θ, we simply get
dx
dθ︸︷︷︸
≡Dθx

� (D2
xx f )−1D2

xθ f .

In other situations, the constraints might depend on θ, but s, m, and/or n might just be
one or two.

A similar result holdswith inequality constraints, except at θwhere changing θ changes
which constraints bind or do not. Such situations are rare, so we will not worry about
them.

Example 4.2 (Production theory). Consider a competitivemultiple product firm facing
output prices p ∈ Rk and input prices w ∈ Rn . The firm’s profits as function of prices
is

π(p , w) � max
y ,x

pT y − wT x s.t. y − f (x) ≤ 0.

The first order conditions are

pT
− λT

�0

−wT + λT Dx f �0
y − f (x) �0

Total differentiating with respect to p, holding w constant gives

dpT
− dλT

�0

dλT Dx f + dxT D2
xxλ

T f �0
dy − Dx f dx �0

Combining we can get
dpT dy � −dxT D2

xxλ
T f dx.

Notice that if we assume the constraint binds and substitute it into the objective
function, then the second order condition for this problem is that vT D2

xxpT f v < 0 for
all v. If the second order condition holds, then we must have

−dxT D2
xxλ

T f dx > 0.

Therefor dpT dy > 0. Increasing output prices increases output.
As an exercise, you could use similar reasoning to show that dwT dx < 0. Increasing

input prices decreases input demand.

Appendix A. Notation

• R is the set of real numbers Rn is the set of vectors of n real numbers.
• x ∈ Rk is read “x in Rk” and means that x is vector of k real numbers.
• f : Rn

→R means f is a function from Rn to R. That is, f ’s argument is an n-tuple
of real numbers and its output is a single real number.
• U ⊆ Rn means U is a subset of Rn .
• When convenient we will treat x ∈ Rk as a k × 1 matrix, so wT x �

∑k
i�1 wi xi
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• Nδ (x) is a δ neighborhood of x, meaning the set of points within δ distance of x.
For x ∈ Rn , we will use Euclidean distance, so that Nδ (x) is the set of y ∈ Rn such
that

√∑n
i�1(xi − yi)2 < δ.

Appendix B. Review of derivatives

Partial and directional derivatives were discussed on the summer math review, so we
will just briefly restate their definitions and some key facts here.

Definition B.1. Let f : Rn
→R. The ith partial derivative of f is

∂ f
∂xi

(x0) � lim
h→0

f (x01, ..., x0i + h , ...x0n) − f (x0)
h

.

The ith partial derivative tells you how much the function changes as its ith argument
changes.

Definition B.2. Let f : Rn
→Rk , and let v ∈ Rn the directional derivative in direction v at

x is

d f (x; v) � lim
α→0

f (x + αv) − f (x)
α

.

where α ∈ R is a scalar.

An important result relating partial to directional derivatives is the following.

Theorem B.1. Let f : Rn
→R and suppose its partial derivatives exist and are continuous in a

neighborhood of x0. Then

d f (x; v) �
n∑

i�1
vi
∂ f
∂xi

(x0)

in this case we will say that f is differentiable at x0.

It is convenient to gather partial derivatives of a function into a matrix. For a function
f : Rn

→R, we will gather its partial derivatives into a 1 × n matrix,

D fx �

(
∂ f
∂x1

(x) · · · ∂ f
∂xn

(x)
)
.

Wewill simply call this matrix the derivative of f at x. This helps reduce notation because
for example we can write

d f (x; v) �
n∑

i�1
vi
∂ f
∂xi

(x0) � D fx v.

Similarly, we can define second and higher order partial and directional derivatives.

Definition B.3. Let f : Rn
→R. The i jth partial second derivative of f is

∂2 f
∂xi∂x j

(x0) � lim
h→0

∂ f
∂xi

(x01, ..., x0 j + h , ...x0n) − ∂ f
∂xi

(x0)

h
.
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Definition B.4. Let f : Rn
→Rk , and let v , w ∈ Rn the directional derivative in directions

v and w at x is

d2 f (x; v , w) � lim
α→0

d f (x + αw; v) − d f (x; v)
α

.

where α ∈ R is a scalar.

Theorem B.2. Let f : Rn
→R and suppose its first and second partial derivatives exist and are

continuous in a neighborhood of x0. Then

d2 f (x; v , w) �
n∑

j�1

n∑
i�1

vi
∂2 f
∂xi∂x j

(x0)w j

in this case we will say that f is twice differentiable at x0. Additionally, if f is twice differentiable,
then ∂2 f

∂xi∂x j
�

∂2 f
∂x j∂x j

.

We can gather the second partials of f into an n × n matrix,

D2 fx �

*.....
,

∂2 f
∂x2

1
· · ·

∂2 f
∂x1∂xn

...
. . .

...
∂2 f

∂x1∂xn
· · ·

∂2 f
∂xn

2

+/////
-

,

and then write d2 f (x; v , w) � wT D2 fx w. D2 fx is also called the Hessian of f .
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