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Much (perhaps all) of mathematics is about studying sets of objects with particular
properties.

Section 1 introduces sets and some related concepts. Section 1.4 briefly discusses
cardinality and introduces countable and uncountable sets. Section 2 is about relations,
especially orders, which are used to state Arrow’s impossibility theorem. The appendix
section A is about familiar sets of numbers, including the integers, rationals, and real
numbers. The properties of these sets of numbers that make them distinct are discussed.

References. Section 1 on sets is partly based on chapter 1 of Carter (2001). Any similar
high-level mathematical economics textbook covers similar material. Examples include
De la Fuente (2000), Ok (2007), and Corbae, Stinchcombe, and Zeman (2009). Textbooks
on real analysis, such as Rudin (1976) and Tao (2006), also typically start with a section
about sets.

Section 1.4 about cardinality is largely based on chapter 2 Rudin (1976). Chapter B of
Ok (2007) covers similar material. Weeks 2 and 3 of the notes of Tao (2003) (on which Tao
(2006) is based) also cover cardinality.

Section 2 about relations is based on chapter 1.2 of Carter (2001). Arrow’s impossibility
theoremfirst appeared inArrow (1950). Feldman (1974) is amore approachable, simplified
proof of the theorem.

The appendix section A is based on Rudin (1976), but any textbook on real analysis will
cover similar material. Tao (2006) (or the note version Tao (2003)) is especially detailed
and careful in its construction of the real numbers.

1. Sets

A set is any well-specified collection of elements.1 Sets are conventionally denoted
by capital letters, and elements of a set are usually denoted by lower case letters. The
notation, a ∈ A, means that a is a member of the set A. A set can be defined by listing its
elements inside braces. For example,

A � {4, 5, 6}

1This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License
1“Well-specified” is somewhat ambiguous, and this ambiguity can lead to trouble such as Russell’s

paradox or Cantor’s paradox. We’ll ignore these paradoxes, but rest assured that they can be avoided by
more carefully defining “well-specified.”
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means that A is a set of three elements with members 4, 5, and 6. The members of a set
need not be explicitly listed. Instead, they can be defined by some logical relation. For
example, the same set A could be written

A � {n ∈ N : 3 < n < 7} (1)

where N � {1, 2, 3, ...} is the natural numbers. The expression in (1) could be read as, “the
set of natural numbers, n, such that 3 is less than n is less than 7.” Sometimes | will be
used to mean “such that” instead of :. The elements of sets need not be simple things like
numbers. For example, if Ak � {n ∈ N : n > k} is the set of natural numbers greater than
k, then you could have a set of sets, B � {A1,A10,A6}. Sets are unordered, so the previous
definition of B is the same as B � {A1,A6,A10}. Also, sets do not contain duplicates, so
for example, {1, 1, 2} ≡ {1, 2}. Sets can be empty. The empty set, also called the null set, is
denoted by ∅ or, less commonly, {}.

1.1. Economic examples. Sets appear all over economics.2

Example 1.1. [Sample space] In a random experiment, the set of all possible outcomes
is called the sample space. E.g. for the roll of a dice, the sample space if {1, 2, 3, 4, 5, 6}.
An event is any subset of the sample space.

Example 1.2. [Games] A game is a model of strategic decision making. A game
consists of a finite set of n players, say N � {1, 2, ..., n}. Each player i ∈ N chooses an
action ai from a set of actions Ai . The outcome of the game depends on the actions
chosen by all players.

Example 1.3. [Consumption set] The consumption set is the set of all feasible con-
sumption bundles. Suppose there are n commodities. A consumer chooses a con-
sumption bundle x � (x1, x2, ..., xn). Consumption cannot be negative, so the con-
sumption set is a subset of Rn

+ � {(x1, ..., xn) : x1 ≥ 0, x2 ≥ 0, ...xn ≥ 0}.

1.2. Set operations. Given two sets A and B, a new set can be formed with the following
operations:

(1) Union: A ∪ B � {x : x ∈ A or x ∈ B}.
(2) Intersect: A ∩ B � {x : x ∈ A and x ∈ B}.
(3) Minus: A \ B � {x : x ∈ A and < B}
(4) Product: A × B � {(x , y) : x ∈ A, y ∈ B}
(5) Power set: P(A) � set of all subsets of A

Often, we will discuss sets that are all subsets of some universal set, U. In this case, the
complement of A in U is Ac � U \A. If we have an indexed collection of sets, {Ak }k∈K , we
may take the union or intersection of all these sets and denote it as ∪k∈KAk or ∩k∈KAk .

2These examples come from chapter 1 of Carter.
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1.3. Set relations. If every element of A is also in B, then we say that B contains A and
write B ⊇ A, or A is a subset of B and write A ⊆ B. If, additionally, there exists b ∈ B
such that b < A, then we say that A is a proper subset of B, which is denoted by A ⊂ B or
B ⊃ A.

Example 1.4 (1.2 Games continued). In a game subsets of players are called coalitions.
The set of all coalitions is the power set of the set of players, P(N).
The action space of a game is the set of all possible outcomes or combinations of

actions, A � A1 × A2 × ... × An . An element of A, a � (a1, a2, ..., an) is called an action
profile.

1.4. Cardinality . 3 Sometimes, we want to compare the size of two sets. This is easy
when sets are finite; we simply count how many elements each has. It is not so easy
to compare the size of infinite sets. Consider, for example, the natural numbers, N, the
integers Z, rationals,Q, and real numbers, R. Let |A| denote the “size” of A (wewill define
it precisely later). We know that

N ⊂ Z ⊂ Q ⊂ R,

so it seems sensible to say that

|N| < |Z| < |Q| < |R|.

On the other hand, the even integers are a subset of Z, but since we can write the set of
even integers as {2x : x ∈ Z}, it doesn’t seem like there are any more integers than even
integers. It was questions like these that led Georg Cantor to pioneer set theory in the
1870’s.

A function (aka mapping), f : A → B is called one-to-one (aka injective) if for every
b ∈ B the set {a : f (a) � b} is either a singleton or emptyo. f is called onto (aka surjective)
if ∀b ∈ B ∃a ∈ A : f (a) � b. If there exists a one-to-one mapping of A onto B (aka bĳection
or one-to-one correspondence), then we say that A and B have the same cardinal number
(or cardinality) and write |A| � |B |. Let Jn � {1, ..., n}. A is finite if |A| � | Jn |. A is
countable if |A| � |N|. A is uncountable if A is neither finite nor countable. You should
verify that the relation |A| � |B | is reflexive (|A| � |A|), symmetric (|A| � |B | implies
|B | � |A|), and transitive (if |A| � |B | and |B | � |C | then |A| � |C |).

Lemma 1.1. Z is countable.

Proof. We can construct a bĳection between Z and N as follows:

Z : 0, −1, 1, 2, −2, 3, −3, ...
N : 1, 2, 3, 4, 5, 6, 7, ...

Or as a formula, f : N→ Zwith

f (n) �



(n − 1)/2 if n odd
−n/2 if n even.

�

3This section based on Chapter 2 Rudin (1976).
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Theorem 1.1. Every infinite subset of a countable set A is countable.

Proof. A is countable, so there exists a bĳection from A to N. We can use this mapping to
arrange the elements of A in a sequence, {an }

∞

n�1 4. Let B be an infinite subset of A. Let
n1 be the smallest number such that an1 ∈ B. Given nk−1, let nk be the smallest number
greater than nk−1 such that ank ∈ B. Such an nk always exists since B is infinite. Also,
B � {ank }

∞

k�1 since otherwise there would be a b ∈ B, but b < A. Thus, f (k) � ank is a
one-to-one correspondence between B and N. �

Theorem 1.2. The rational numbers are countable.

Proof. Consider the following arrangement of positive rational numbers:

1/1 2/1 3/1 4/1 · · ·
1/2 2/2 3/2 4/2 · · ·
1/3 2/3 3/3 4/3 · · ·
...

. . .

Starting in the top left and going back and forth diagonally, we get the following sequence:

1/1, 1/2, 2/1, 1/3, 2/2, 3/1, ...

Adding zero and the negative rationals, we can write e.g.

0, 1/1,−1/1, 1/2,−1/2, 2/1,−2/1, 1/3,−1/3, 2/2,−2/2, 3/1, ...
�q1, q2, q3, q4, ...

Continuing on in this way, we could list all rational numbers. Some of these fractions
represent the same number and can be removed. Thus, we obtain a correspondence
between the rationals and an infinite subset of N. However, by theorem 1.1, this subset is
countable, so the rationals are also countable. �

Theorem 1.3. The real numbers are uncountable.

Proof. (Cantor’s diagonal argument) We have not rigorously defined the real numbers, so
wewill take for granted the following: every infinitedecimal expansion, (e.g. 0.135436080...)
represents a unique real number in [0, 1), except for expansions that end in all zeros or
nines, which are equivalent5.

We will use proof by contradiction to prove the theorem. Proof by contradiction is a
common technique that works by showing that if the theorem were false, then we could
prove something that contradicts what we know is true.

4By this notation, we mean an infinite ordered list of elements of A, i.e. a1 , a2 , a3 , ....
5E.g. 0.199... � 0.200...
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Suppose the theorem is false. Then we can construct a surjective mapping from N to
(0, 1). That is we can list all real numbers in (0, 1) as

r1 � 0. d11 d12 d13 ...
r2 � 0. d21 d22 d23 ...
r3 � 0. d31 d32 d33 ...
...

...

where each di j ∈ {0, 1, ..., 9}, and no expansion ends in all nines. We will now show that
there is a real number in (0, 1) that is not in the list. Let x∗ � 0.d∗1d∗2d∗3.... where d∗n is chosen
such that d∗n , dnn and x∗ is sure not to end in all nines. There are many possibilities, but
to be concrete, let’s set

d∗n �




dnn + 1 if dnn < 8
0 if dnn ≥ 8

.

x∗ is in (0, 1), but x∗ , rn for any n because d∗n , dnn . Thus, we have a contradiction, and
there cannot be a onto mapping from N to (0, 1). If there is no surjective mapping from N
to (0, 1), there can be no surjective mapping from N to R since (0, 1) ⊂ R. �

Countable sets are said to have cardinality ℵ0 (“aleph null”). Note that an implication
of theorem 1.1 is that ℵ0 is the smallest infinite cardinal number. The real numbers
have cardinality of the continuum, sometimes written 2ℵ0 or c. You might be wondering
whether there are larger cardinal numbers. The answer is yes. The set of all subsets of
a set, A, called the power set of A, always has larger cardinality 2|A| (the proof of this is
similar to the proof that the real numbers are uncountable).

A final question to ask yourself is whether there are sets with cardinality between ℵ0
and 2ℵ0 . The answer to that question is whatever you want it to be. The conjecture that
there are no cardinal numbers between ℵ0 and 2ℵ0 is known as the continuum hypothesis.
It was proposed by Cantor in the 1870s. In 1900, Hilbert made a famous list of 23
important unsolved problems in mathematics. The continuum hypothesis was the first.
In 1940, Gödel showed that the continuum hypothesis cannot be disproved from the
standard axioms that lie at the foundation of mathematics. In 1963, Cohen showed that
the continuumhypothesis cannot be proved from the standard axioms. This is an example
of Gödel’s incompleteness theorem, a very interesting result that wewon’t be able to cover
in this course. Loosely speaking, Gödel’s incompleteness theorem says that for any non-
trivial set of assumptions and system of logic, you can make statements consistent with
the system of logic that cannot be proven or disproven from the assumptions.

Appendix A. Numbers

We have been assuming familiarity with the natural numbers, integers, rationals, and
real numbers. This section explores some properties of these sets of numbers and heuristi-
cally describes how these sets of numbers are constructed. It may appear silly and slightly
confusing to try to be “rigorous” about something like real numbers that we already feel
like we understand. Much of mathematics is about finding and describing patterns that
apply to abstract objects. Many of the abstract objects that we will study are similar to the
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real numbers in some ways, but different in others. Examples of things that are similar to
the real numbers include complex numbers, vector spaces, matrices, and sets of functions.
Some of these things we will be able to add and multiple just like real numbers, but not
all of them. A natural sort of question is: this class of objects shares properties X, Y, and Z
with the real numbers; what theorems that we know about the real numbers will also be
true of this class of objects? Before answering this sort of question we have to be precise
about what properties the real numbers have.

We will take for granted that we understand what the natural numbers are. Note,
however, that it is possible to rigorously construct the natural numbers from a simple list
of assumptions using logic or set theory. We will also take for given that we know how to
add and multiply natural numbers. Addition has the following nice properties.

1 Closure if a , b ∈ N, so is a + b
2 Associative a + (b + c) � (a + b) + c.

If we demand that addition also has
3 Identity ∃0 s.t. a + 0 � a,
4 Inverse ∀a, ∃b s.t. a + b � 0

then we must expand the natural numbers to include the integers, Z. Multiplication also
satisfies these four analogous properties:

1’ Closure if a , b ∈ A, so is ab
2’ Associative a(bc) � (ab)c.
3’ Identity ∃1 s.t. a1 � a,
4’ Inverse ∀a , 0, ∃b s.t. ab � 1

However, if we want multiplicative inverses to exist for all z ∈ Z, then we must further
expand our set of numbers to the rationals, Q. Addition and multiplication are also

5 Commutative a + b � b + a
6 Distributive a(b + c) � ab + ac

To summarize: if we start with the natural numbers, and then demand that multiplication
and addition have these six properties, we end up with the rational numbers.

More generally, we could study a set A combinedwith one or two operations that satisfy
certain properties. The branch of mathematics that studies these sort of objects is abstract
algebra. We will not be studying algebra in detail, but it may be useful to be familiar with
some basic terms. A group is a set and operation, (A, ⊕) such that A is closed under ⊕,
⊕ is associative, there exists an identity, and inverses exist under ⊕ (i.e. properties 1-4).
If ⊕ is also commutative, we call (A, ⊕) an abelian (or commutative) group. Examples
of groups include (Z, +) and (Q, ·). A ring is a set with two operations, (A, ⊕, �) such
that (A, ⊕) is a group, and � has properties 1-3 and 6. (Z, +, ·) is a ring. One ring that
will come up repeatedly in this course is the set of all n by n matrices with the usual
matrix addition and multiplication. A field is a set with two operations such that 1-6
hold for both operations. (Q, +, ·) is a field. Another field that you may have encountered
is the complex numbers with the usual addition and multiplication. If you’re interested
you may want to verify that the integers modulo any number is a ring, and the integers
modulo any prime number if a field.
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A.1. Real numbers. The rational numbers are pretty nice; they’re a field with the six
properties listed above. However, Q does not contain all the numbers that we think it
should. For example,

Theorem A.1.
√
2 < Q

Proof. Suppose
√
2 ∈ Q. Then

√
2 � p/q where p and q are not both even. If we square

both sides, we get

2 �p2/q2

2q2 �p2.

Hence, p2 must be even. From the review, then p must also be even, say p � 2m. Then we
have

2q2 �2(2m2)

q2 �2m2,

which means q must also be even, contrary to our starting assumption. �

Apparently, the rationals have some holes in them that we should fill in. To do so in
a unique way, we need to define another property of the rational numbers. A totally
ordered set is a set, A, and a relation, <, such that (i) (total) ∀a , b ∈ A either a < b or a � b
or a > b; and (ii) (transitive) if a < b and b < c then a < c. An ordered field is a field that
is a totally ordered set and addition and multiplication preserve the ordering in that (i) if
b < c then a + b < a + c (ii) if a > 0 and b > 0 then ab > 0.
We need onemore definition. Simon and Blume state that one property of real numbers

that will be used throughout the book is the least upper bound property. It turns out that
this property is not only useful; it lies at the foundation of the real numbers. Let S be an
ordered set and A ⊂ S. s ∈ S is an upper bound of A if s ≥ a∀a ∈ A. s is a least upper
bound (aka supremum) of A if s is an upper bound of A and if r < s, then r is not an
upper bound of A. S has the least-upper-bound property (aka complete or Dedekind
complete) if whenever A ⊂ S has an upper bound, A has a least upper bound. Given that
√
2 < Q, it should not be surprising that the rational numbers are not complete.

Theorem A.2 (Real numbers). There exists an ordered field, R, that has the least upper bound
property. R contains Q. Moreoever, R is “unique”.

The proof of this is surprisingly long, so we will not go over it in detail. Existence can
be proven by construction. One method involves constructing real numbers as Dedekind
cuts. A Dedekind cut is a nonempty subset of the rationals, A ⊂ Q, such that (i) if p ∈ A,
q ∈ Q, and q < p, then q ∈ A and (ii) if p ∈ A then p < r for some r ∈ A (i.e. A
has no greatest element. For example, the Dedekind cut associated with

√
2 would be

{p ∈ Q : p2 < 2}). We would then define addition, multiplication, and ordering of these
cuts in the natural way and verify that all the properties above are satisfied. See Rudin
(1976) for details if you are interested.

The “uniqueness” is harder to prove. R is unique in the sense that any two ordered fields
with the least-upper-boundproperty are isomorphic (there exists a bĳection between them
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that preserves multiplication, addition, and ordering). The proof proceeds by supposing
that R and F are two ordered fields with the least-upper-bound property and then shows
that there is an isomorphism between them.
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