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Abstract

This paper introduces a likelihood ratio-based test for examining the null hypothesis of an M0-
component model versus an alternative (M0 + 1)-component model within the context of nor-
mal mixture panel regression. Contrary to the cross-sectional normal mixture, we demonstrate
that the first-order derivative of the density function for the variance parameter in the panel
normal mixture is linearly independent from its second-order derivative for the mean parame-
ter. However, similar to the cross-sectional normal mixture, the likelihood ratio test statistic for
the panel normal mixture remains unbounded. To manage this unboundedness, we employ a
penalized maximum likelihood estimator and derive the asymptotic distribution of penalized
likelihood ratio test and Expectation-Maximization test statistics using a fourth-order Taylor ex-
pansion of the log-likelihood function for reparameterized parameters. A sequential hypothesis
testing approach is developed for consistently estimating the number of components. Simula-
tion experiments reveal good finite sample performance of the proposed tests. We apply these
tests to estimate the number of production technology types for the finite mixture Cobb-Douglas
production function model.
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1 Introduction

Finite mixture models offer a natural representation of heterogeneity across a finite number of
classes. Due to their flexibility, they have been employed in empirical applications across vari-
ous fields since the proposal of a two-component normal mixture model by Pearson (1894). In
economics, finite mixtures are frequently used to model unobserved individual-specific effects
in labor economics, health economics, and industrial organization, among others.1 Theoretical
properties and examples of applications have been discussed by several authors, such as Lindsay
(1995), Titterington et al. (1985), and McLachlan and Peel (2004).

The number of components is a crucial parameter in finite mixture models. In economic appli-
cations, the number of components often represents the number of unobservable types or abilities.
Choosing an arbitrary number of parameters may lead to overestimation or underestimation of
the level of heterogeneity. Using too few components may result in biased estimation due to over-
looked unobserved heterogeneity, while employing too many components can be computationally
costly and ill-behaved because of potential identification problems. Thus, developing a statistical
procedure to determine the number of components is essential.

Testing for the number of components in normal mixture regression models has been a long-
standing unsolved problem. The regularity conditions of the likelihood ratio test (LRT) for stan-
dard asymptotic analysis fail in finite mixture models due to issues such as non-identifiable pa-
rameters, the singularity of the Fisher Information matrix, and the true parameter being on the
boundary of the parameter space. Numerous papers have been written on the subject of LRT for
the number of components (see, e.g., Ghosh and Sen, 1985; Chernoff and Lander, 1995; Lemdani
and Pons, 1997; Chen and Chen, 2001, 2003; Chen et al., 2004; Garel, 2001, 2005; Chen et al., 2014),
and the asymptotic distribution of the LRT statistic for general finite mixture models has been
derived as a function of the Gaussian process (Dacunha-Castelle and Gassiat, 1999; Azaı̈s et al.,
2009; Liu and Shao, 2003; Zhu and Zhang, 2004). However, the key assumptions in these works
are violated in cross-sectional normal regression models because normal mixtures possess addi-
tional undesirable mathematical properties: (i) the Fisher information for testing is not finite, (ii)
the log-likelihood function is unbounded, and (iii) the second derivative of the density function
for the mean parameter is linearly dependent on its first derivative for the variance parameter. The
asymptotic distribution of the LRT statistics of a cross-sectional univariate finite mixture normal
regression model is analyzed by Kasahara and Shimotsu (2015), while its multivariate extension

1For example, Heckman and Singer (1984) use the finite mixture model to provide an alternative method to account
for the unobserved heterogeneity in the analysis of single-spell duration times of unemployed workers. Keane and Wolpin
(1997) and Cameron and Heckman (1998) analyze a dynamic model of schooling and occupational choices with unobserved
heterogeneous human capital. Likewise, finite mixture models have been applied in health economics. Deb and Trivedi
(1997) develop a finite mixture negative binomial count model that accounts for unobserved dispersion of elderly medical
care utilization. In industrial organizations, modelling consumer segmentation in marketing such as Kamakura and Russell
(1989) and Andrews and Currim (2003) is a venue of application.
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is developed by Kasahara and Shimotsu (2019). Amengual et al. (2022) develops a score-type test
for a cross-sectional normal mixture model.

This paper develops a likelihood-ratio-based test for determining the number of components
in finite mixture normal regression models with panel data, where outcome variables are condi-
tionally independent across periods given latent type within each unit. To the best of our knowl-
edge, it is not known in the existing literature whether the aforementioned problems (i)-(iii) of
the cross-sectional normal mixture still arise in the panel normal mixture or not. Furthermore, no
likelihood-based test has yet been developed for testing the null hypothesis of an M0-component
model against an alternative (M0+1)-component model forM0 ≥ 1 in the panel normal regression
mixture models with conditional independent errors.2

We show that problems related to (i) and (ii) arise, but the higher-order degeneracy of problem
(iii) disappears in the panel normal mixture models with conditional independence. Following
Chen and Li (2009) and Kasahara and Shimotsu (2015), we consider a penalized likelihood ra-
tio test (PLRT) and an Expectation-Maximization (EM) test to deal with the unboundedness and
analyze the asymptotic distribution of the PLRT using a reparameterization orthogonal to the di-
rection in which the Fisher information matrix is singular. The likelihood ratio of an (M0 + 1)-
component model against the M0-component model is approximated with local quadratic-form
expansion with squares and cross-products of the reparameterized parameters. We demonstrate
that the asymptotic null distributions of the penalized likelihood ratio test statistic (PLRTS) and the
EM test statistic are characterized by the maximum of M0 random variables, which we can easily
simulate. Building on the PLRT and EM tests, we propose a sequential hypothesis testing ap-
proach for consistently estimating the number of components. In simulations, our proposed PLRT
and EM tests demonstrate favorable finite sample properties. Moreover, a sequential hypothesis
testing approach accurately selects the correct number of components with high frequency, sur-
passing selection procedures based on the Akaike Information Criterion (AIC) and the Bayesian
Information Criterion (BIC).

This paper makes several contributions. First, it analyzes the likelihood-ratio-based test for the
number of components in the panel normal regression mixture models with conditional indepen-
dence. Kasahara and Shimotsu (2015) and Kasahara and Shimotsu (2019) analyze the likelihood-
ratio-based tests for the number of components in the cross-sectional univariate normal mixture
regression models and the multivariate normal mixture models, respectively. We demonstrate that
the asymptotic distribution of PLRT and EM test for the panel normal regression mixture models
with conditionally independent errors differs from those of the univariate/multivariate normal
mixture models in the aforementioned two papers because the higher-order dependency does not
occur when the repeated measurement of outcome variables is available in panel data. Further-

2Kasahara and Shimotsu (2014) develops a procedure to estimate a lower bound on the number of components con-
sistently in finite mixture models in which each component distribution has independent marginals, which includes the
panel normal regression mixture models with conditionally independent errors as a special case.
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more, we develop a sequential hypothesis testing approach for consistently estimating the number
of components.

Second, while it is well known that the log-likelihood function of normal mixture models is
unbounded (Hartigan, 1985), it is unknown if the related unboundedness problem arises in the
panel data. We show that the likelihood ratio test statistic is unbounded in the panel normal
mixture models with conditionally independent errors when the time dimension of panel data
is finite. This unboundedness causes over-rejection of the likelihood ratio test. We introduce a
penalty function to prevent the likelihood ratio test statistics from being unbounded, where we
use computational experiments to determine the data-driven penalty function. We develop an R
package NormalRegPanelMixture (Hao, 2017) that contains the EM test module and asymptotic
distribution simulation module.

Third, our empirical analysis of the number of production technology types using panel data
from Japanese and Chilean manufacturing firms provides strong evidence for substantial hetero-
geneity in production function coefficients across firms within narrowly defined industries. This
is an important contribution to the literature on production function estimation, where most ex-
isting empirical applications assume the homogeneity of production function coefficients across
firms using the standard production function estimation methods developed by Olley and Pakes
(1996), Levinsohn and Petrin (2003), and Ackerberg et al. (2015). Our empirical finding suggests
that it is essential to incorporate unobserved heterogeneity in the production function coefficients
across firms in applications (Li and Sasaki, 2017; Doraszelski and Jaumandreu, 2018; Balat et al.,
2019; Kasahara et al., 2022).

The EM test approach was introduced by Li et al. (2009) and Chen and Li (2009) to test homo-
geneity in finite mixture models. Li and Chen (2010) developed an EM test for the null hypothesis
of M0 components applicable to general M0 ≥ 2, while Kasahara and Shimotsu (2015) proposed
an EM test for normal regression mixture models to test the null of M0 ≥ 2. The EM approach
has also been applied to test homogeneity in multivariate mixtures (Niu et al., 2011) and subgroup
analyses (Shen and He, 2015). More recently, Liu et al. (2018) extended the EM test to mixtures
of the general location-scale family distribution, and Kasahara and Shimotsu (2019) developed an
EM test for multivariate normal mixture models. Building upon the prior literature, this paper
develops an EM test for panel normal regression mixture models with conditionally independent
errors.

Identifying and estimating latent group structure in panel data have received attention in re-
cent literature (Kasahara and Shimotsu, 2009; Ando and Bai, 2016; Bonhomme and Manresa, 2015;
Lin and Ng, 2012; Lu and Su, 2017; Su et al., 2016). Finite mixture modeling provides a practi-
cal, model-based approach to determining unobserved group structures. Choosing the number of
groups is often a prerequisite for classifying each individual’s group membership. We can esti-
mate the number of groups in panel data regression models by applying our proposed sequential
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hypothesis testing approach.
The rest of the paper is organized as follows. In Section 2, we define the finite normal mixture

panel regression model. In Section 3, we demonstrate the PLRT for testing the homogeneity of
normal mixture panel regression against a two-component model as a precursor to obtaining the
general M0 components test. Section 4 generalizes the result to testing M0 components against
M0 + 1 components. Section 5 introduces the EM test for testing M0 components against M0 + 1

components. Section 6 derives the asymptotic distribution of the PLRT and EM tests under local
alternatives, while Section 7 develops a consistent estimator for the number of components based
on sequential hypothesis testing. Section 8 presents the simulated results of the tests. Section 9
provides an empirical application. Let := denote “equals by definition.” Boldface letters denote
vectors or matrices.

2 Heteroskedastic finite mixture panel normal regression model

We consider finite mixture normal regression models with panel data, where the panel length T is
fixed and the number of cross-sectional observations n goes to infinity. Definew := {yt,xt, zt}Tt=1

with yt ∈ R,xt ∈ Rq, zt ∈ Rp. Given M ≥ 2, denote the density of a M−component model that
represents the conditional density function of {yt}Tt=1 given {xt, zt}Tt=1 as

fM (w;ϑM ) =

M∑
j=1

αjf(w;γ,θj), (1)

where ϑM = (α>,θ>1 , ...,θ
>
M , γ

>)> ∈ ΘϑM , α> := (α1, ..., αM−1), αM = 1−
∑M−1
j=1 αj , and

f(w;γ,θj) =

T∏
t=1

1

σj
φ

(
yt − µj − x>t βj − z>t γ

σj

)
(2)

is the j-th component density function with µj ∈ Θµ ⊂ R , σ2
j ∈ Θσ ⊂ R++, βj ∈ Θβ ⊂ Rq ,

γ ∈ Θγ ⊂ Rp, and φ(t) = (2π)−1/2 exp(− t
2

2 ) is the standard normal probability density function.
We collect the component-specific parameters into θj := (µj , σ

2
j ,β

>
j )> ∈ Θθ while the regression

coefficient γ for a vector z is assumed to be common across components.
The number of components, denoted by M0, is defined as the smallest integer M such

that the data density of w admits the representation (1). Consider a random sample of n
with panel length of T independent observations {W i}ni=1 where W i = {(Yit,X>it ,Z

>
it)
>}Tt=1

from a true M0-component density fM (w;ϑ∗M0
) defined in equation (1) with ϑ∗M0

=

((α∗)>, (θ∗1)>, ..., (θ∗M0
)>, (γ∗)>)>. The superscript ∗ signifies the true parameter value. Because

component distributions can be identified only up to permutation, we assume that µ∗1 < µ∗2 <
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· · · < µ∗M0
for identification.3

Our goal is to test
H0 : M = M0 against HA : M = M0 + 1.

3 Likelihood ratio test for H0 : M = 1 against HA : M = 2

We begin by developing the PLRT to test the null hypothesis H0 : M = 1 against the alternative
hypothesis H1 : M = 2. Consider a random sample of n with a panel length of T independent
observations {W i}ni=1, whereW i = {(Yit,X>it ,Z

>
it)
>}Tt=1, drawn from a true one-component den-

sity f(w;γ,θ) defined in equation (2). Now consider a two-component mixture density function

f2(w;ϑ2) = αf(w;γ,θ1) + (1− α)f(w;γ,θ2),

where ϑ2 = (α,θ>1 ,θ
>
2 ,γ

>)> ∈ Θϑ2
, and α is the mixing probability of the first component. The

two-component model can generate the true one-component density in two cases: (1) θ1 = θ2 =

θ∗; (2) α = 0 or 1. Consequently, the null hypothesis H0 : M = 1 can be partitioned into two
sub-hypotheses: H01 : θ1 = θ2 and H02 : α(1 − α) = 0. The regularity conditions of the LRTS for
a standard asymptotic analysis fail in finite mixture models: under H01, α is not identified, and
the Fisher information matrix for the other parameters becomes singular; under H02, α is on the
boundary of the parameter space, and either θ1 or θ2 is not identified.

As discussed in the introduction, analyzing the asymptotic distribution of the LRTS for the
cross-sectional normal mixture is challenging due to its undesirable mathematical properties (cf.,
Chen and Li, 2009): (i) the Fisher information for testing H02 is not finite, (ii) the log-likelihood
function is unbounded (Hartigan, 1985), and (iii) the first-order derivative of f2(w;ϑ2) with re-
spect to σ2

j is linearly dependent on its second-order derivative with respect to µj . The presence of
problems (i)-(iii) in panel normal mixture models with T ≥ 2 is not well-understood in the existing
literature because, to the best of our knowledge, no existing studies have examined them.

Regarding problem (i), we note that the issue of infinite Fisher information for testing H02 also
arises in the panel normal mixture model. For brevity, let us consider the case without (X,Z).
The score for testing H02 : α = 0 takes the form

∂f2(W ;µ1, σ
2
1 , µ2, σ

2
2)

∂α

∣∣∣∣
α=0,µ2=µ∗,σ2

2=σ∗2
=

f(W ;µ1, σ
2
1)

f(W ;µ∗, σ∗2)
− 1,

where f(W ;µ, σ2) =
∏T
t=1 φ((yt − µ)/σ)/σ, and φ(·) is the standard normal density function.

3More generally, we may consider a lexicographical order: θ∗
1 < θ∗

2 < · · · < θ∗
M0

.
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When σ2
1 > 2σ∗2, E[{f(W ;µ1, σ

2
1)/f(W ;µ∗, σ∗2) − 1}2] = ∞. For more details, please refer to

Proposition 5. Because the infinite Fisher information causes difficulty in deriving the asymptotic
distribution under H02, this paper focuses on testing H01. We define Υ∗1 := {(α,γ,θ1,θ2) ∈ Θϑ2 :

θ1 = θ2 = θ∗ and γ = γ∗}, which is the subspace of Θϑ2 that corresponds to H01. Note that
because of our focus on H01, our test may not have power against the local alternatives with αn →
0. We analyze the asymptotic distribution of the PLRTS under the contiguous local alternatives in
Section 6.

Related to problem (ii), the LRTS in normal mixture models with panel data becomes un-
bounded as the sample size n goes to ∞. Define the likelihood ratio statistic with respect to the
true parameter under H0 as:

LR∗n(ϑ2) := 2

{
n∑
i=1

log f2(W i;ϑ2)−
n∑
i=1

log f(W i;γ
∗,θ∗)

}
,

where f2 is the density of the two-component finite mixture distribution in (1) with M = 2, and
((γ∗)>, (θ∗)>)> is the true parameter value under H0. Let ϑ̃2,n be the maximum likelihood esti-
mator for the two-component model, i.e., ϑ̃2,n = arg maxϑ2∈Θϑ2

LR∗n(ϑ2).

Proposition 1. Suppose the true model is described by the one-component model with (γ,θ) = (γ∗,θ∗).
Then, for any positive constant M > 0, Pr

(
LR∗n(ϑ̃2,n) ≤M

)
→ 0 as n→∞.

To deal with unboundedness, we consider a maximum penalized likelihood estimator (PMLE)
as in Chen and Tan (2009) using the following penalty function:

p̃n(ϑM ) :=

M∑
j=1

pn(σ2
j ) with pn(σ2

j ) := −an{σ2
0/σ

2
j + log(σ2

j /σ
2
0)− 1}. (3)

This penalty function circumvents the problem of unbounded log likelihood by preventing a vari-
ance parameter estimate from nearing zero. The parameter an is selected such that the penalty’s
impact becomes asymptotically negligible for the distribution of the PMLE. Refer to the conditions
C1-C3 in the proof of Proposition 6.

Let

ϑ̂2 = arg max
ϑ2∈Θϑ2

n∑
i=1

log f2(W i;ϑ2) + p̃n(ϑ2)

denote the Penalized Maximum Likelihood Estimator (PMLE, hereafter) under the two-
component model. Define a set of parameter values for the two-component density that generates
the true one-component density by Θ∗2 := {(α,γ,θ1,θ2) ∈ Θϑ2 : θ1 = θ2 = θ∗ and γ = γ∗;α =

1 and θ1 = θ∗;α = 0 and θ2 = θ∗}. θ1 and θ2 are component-specific parameters, while γ is a pa-
rameter vector common across components. The following proposition establishes the consistency
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of the PMLE.

Assumption 1. (a)X and Z have finite second moments, and Pr(X>β+Z>γ 6= X>β∗+Z>γ∗) > 0

for (β>,γ>)> 6= ((β∗)>, (γ∗)>)>. (b) an > 0 and an = o(n1/4) in the penalty function (3).

Proposition 2. Suppose that Assumption 1 holds. Then under the null hypothesis H0 : M0 = 1,
infϑ2∈Θ∗2

|ϑ̂2 − ϑ2| →p 0.

It should be noted that f2(w;ϑ∗2) = f(w;γ∗,θ∗) for any ϑ∗2 ∈ Θ∗2. Consequently, Proposition
2 suggests that the PMLE ϑ̂2 converges in probability to a set of parameters for which the true
density function f(w;γ∗,θ∗) emerges within the space of two-component density functions.

For problem (iii), we show that in normal mixture models with panel data, the first-order
derivative of f2(w;ϑ2) with respect to σ2

j is not linearly dependent with its second-order derivative
with respect to µj (See Proposition 3(c)). Consequently, the panel mixture model (1) with the com-
ponent density function (2) is strongly identifiable, and the best rate of convergence for estimating
the mixing distribution is n−1/4 when the number of components is unknown (c.f., Chen, 1995).
See Proposition 4(a). In contrast, the strong identifiability does not hold for the cross-sectional nor-
mal mixture, and its convergence rate becomes as slow as n−1/8 when the number of components
is over-specified (c.f., Kasahara and Shimotsu, 2015).

As in any finite mixture models, however, the standard asymptotic analysis breaks down in
testing H01 : θ1 = θ2 = θ∗ because α is not identified under H01; in addition, the first-order
derivative at the true value ϑ∗2 = (α, (θ∗)>, (θ∗)>, (γ∗)>)> are linear dependent as

∇θ1 log f2(w;ϑ∗2) =
α

1− α
∇θ2 log f2(w;ϑ∗2). (4)

To deal with this linear dependency, we analyze the asymptotic distribution of LRTS by developing
a higher-order approximation for the log-likelihood function.

To extract the direction of Fisher Information matrix singularity, we adapt the reparameteriza-
tion approach by Kasahara and Shimotsu (2012) and consider the following one-to-one reparame-
terization of θ1 and θ2 given α:(

λ

ν

)
:=

(
θ1 − θ2

αθ1 + (1− α)θ2

)
so that

(
θ1

θ2

)
=

(
ν + (1− α)λ

ν − αλ

)
, (5)

where ν and λ are both (q + 2) × 1 reparameterized parameter vectors with ν = (νµ, νσ,ν
>
β )>

and λ = (λµ, λσ, (λβ)>)> = (µ1 − µ2, σ
2
1 − σ2

2 , (β1 − β2)>)>. We also write θ and λ as θ =

(θ1, θ2, θ3, ..., θq+2)> := (µ, σ2, β1, ...βq)
> and λ = (λ1, λ2, λ3, ..., λq+2)> := (λµ, λσ, λβ1

, ..., λβq )
>.

This reparameterization is essential for analyzing the asymptotic distribution of the PLRTS in
light of the linear dependency in (4). The reparameterized parameter λ captures a deviation from
the one component model, where its first-order derivatives of the log density are identically equal
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to zero under H0 : M = 1. Consequently, this reparameterization facilitates the derivation of an
approximate quadratic-form criterion function, which is based on the fourth-order Taylor series
approximation of the log-likelihood function, in order to characterize the asymptotic distribution
of the LRTS.

Define the space for reparameterized parameters as

ψ := (γ>,ν>,λ>)> ∈ Θψ,

where Θψ = {ψ : γ ∈ Θγ ,ν + (1−α)λ ∈ Θθ,ν −αλ ∈ Θθ}. Under the null hypothesis H01 : θ1 =

θ2 = θ∗, we have λ = (0, . . . , 0)> and ν = θ∗. We rewrite the reparameterized parameters under
null hypothesis to be (ψ∗)> = ((γ∗)>, (θ∗)>, 0, . . . , 0)>. Under the reparameterized parameter
space, the density function and its logarithm are expressed as

g(w;ψ, α) = αf(w;γ,ν + (1− α)λ) + (1− α)f(w;γ,ν − αλ) and (6)

l(w;ψ, α) = log g(w;ψ, α).

Write ψ as ψ = (η>,λ>)> with η = (γ>,ν>)>, where η∗ = ((γ∗)>, (ν∗)>)> and λ∗ = 0. Denote
the parameter space of η and λ by Θη ⊂ Rp+q+2 and Θλ ⊂ Rq+2, respectively.

Under this reparameterization, the first-order derivatives of the reparameterized log density
with respect to the reparameterized parameters η is identical to those under the one-component
model, and the first-order derivative with respect to λ is a zero vector:

∇η> l(w;ψ∗, α) =
∇(γ>,θ>)>f(w;γ∗,θ∗)

f(w;γ∗,θ∗)
and ∇λl(w;ψ∗, α) = 0. (7)

With ∇λl(w;ψ∗, α) = 0, the Fisher information matrix is singular, and the standard quadratic ap-
proximation fails. Consequently, the information on λ is provided by the second-order derivative
of l(w;ψ, α) with respect to λ. We use second-order derivative with respect to λ to identify λ:

∇λλ> l(w;ψ∗, α) = α(1− α)
∇θθ>f(w;γ∗,θ∗)

f(w;γ∗,θ∗)
. (8)

When α is bounded away from 0 and 1, the elements of ∇λλ> l(W ;ψ∗, α) are mean-zero random
variables.

Note that, unlike the cross-sectional models analyzed by Kasahara and Shimotsu (2015), there
exists no collinearity between these first and second-order derivatives for the panel models. This
distinction is indeed important as it highlights the differences in the asymptotic distribution of the
LRTS for the panel models compared to the cross-sectional models. The absence of collinearity
between the first and second-order derivatives in panel models leads to different convergence
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rates and asymptotic properties.
Let f∗ and∇f∗ denote f(W ;γ∗,θ∗) and∇f(W ;γ∗,θ∗). Define the vector s(W ) as

s(W ) =

(
sη(W )

sλλ(W )

)
, where sη(W )

(p+q+2)×1

:=
∇(γ>,θ>)>f

∗

f∗
and sλλ(W )

((q+2)(q+1)/2)×1

:=
∇̃θθ>f∗

f∗
.

(9)

The term ∇̃θθ>f∗ denotes the second-order derivatives of the density function f∗ with respect to
the parameters θ. Coefficients cjk are employed to adjust the scaling of these second-order deriva-
tives. The function s(w) comprises the second-order derivatives of the log-likelihood function
with respect to the reparameterized parameter λ. This function, sλλ(w), serves as a score function
for identifying λ. Consequently, s(w) is referred to as a score function. An explicit expression for
the score function s(w) can be derived using Hermite polynomials, as elaborated in Appendix B.2.

Collect the relevant normalized reparameterized parameters and define t(ψ, α) as

t(ψ, α) =

(
tη

tλ(λ, α)

)
=

(
η − η∗

α(1− α)v(λ)

)
, (10)

where v(λ) is a vector of unique elements of λλ> given by

v(λ) = (λ1λ1, ..., λq+2λq+2, λ1λ2, ..., λq+1λq+2)> (11)

of which length is qλ := (q + 2)(q + 3)/2.
Let Ln(ψ, α) :=

∑n
i=1 l(W i;ψ

∗, α) be the reparameterized log-likelihood function and define
the normalized score vector

Sn := n−1/2
n∑
i=1

s(W i).

Then, taking the fourth order Taylor expansion of Ln(ψ, α) around (ψ∗, α), we may write
2{Ln(ψ, α)− Ln(ψ∗, α)} as a quadratic function of

√
nt(ψ, α) as

2{Ln(ψ, α)−Ln(ψ∗, α)} = 2(
√
nt(ψ, α))>Sn − (

√
nt(ψ, α))>In(

√
nt(ψ, α)) +Rn(ψ, α) (12)

= G>nInGn −
[√
nt(ψ, α)−Gn

]> In
[√
nt(ψ, α)−Gn

]
+Rn(ψ, α), (13)

where In is the negative of the sample Hessian defined in the proof of Proposition 3 while Gn :=

I−1
n Sn. Let I = E[s(W )s(W )>].

Assumption 2. (a) X and Z have finite 8-th moments. (b) E[UU>] is non-singular, where U =

[1,X>,Z>]>.
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Proposition 3. Suppose that assumption 1 and 2 hold. Then, under H0 : M = 1, for α ∈ (0, 1), (a) for
any δ > 0, lim supn→∞ Pr(supψ∈Θψ :||ψ−ψ∗||≤κ |Rn(ψ, α)| > δ(1 + ||nt(ψ, α)||2)) → 0 as κ → 0, (b)

Sn
d→ S ∼ N(0,I), and (c) In

p→ I , where I is finite and non-singular.

The non-singularity of I in Proposition 3(c) highlights the difference between the cross-
sectional normal mixture and the panel data normal mixture models. In particular, as shown
in equation (75) in Appendix B.2, the first-order derivative of f2(w;ϑ2) with respect to σ2

j is lin-
early independent of its second-order derivative with respect to µj when T ≥ 2, ensuring that the
high-order degeneracy of problem (iii) does not arise. Intuitively, the availability of repeated ob-
servations within each individual unit provides better identification, even for over-parameterized
models, and reduces the degree of higher-order degeneracy.

The set of feasible values of
√
nt(ψ, α) is given by the shifted and re-scaled parameter space

for (η, v(λ)) defined as Λn :=
√
n(Θη − η∗) ×

√
nα(1 − α)v(Θλ), where v(A) := {t ∈ Rqλ :

t = v(λ) for some λ ∈ A ⊂ Rq+2}. Because Λn/
√
n is locally approximated by a cone Λ :=

Rp+q+2 × v(Rq+2), we may apply Lemma 2 of Andrews (1999) to approximate the distribution
of the supremum of the right-hand side of (13) as

max
ψ∈Θψ

2{Ln(ψ, α)− Ln(ψ∗, α)} d→ G>IG− inf
t∈Λ

(t−G)′I(t−G),

where G = I−1S ∼ N(0,I−1). This allows us to characterize the asymptotic distribution of the
LRTS.

For each α ∈ (0, 1), define the reparameterized PMLE by

ψ̂ = arg max
ψ∈Θψ

Ln(ψ, α) +

2∑
j=1

pn(σ2
j (ψ, α)) (14)

with ψ̂ := (γ̂>, ν̂>, λ̂
>

)>, where Θψ is defined as the space of ψ so that the ϑ2 implied is in Θϑ

and σ2
j (ψ, α) is the value of σj implied by the value of ψ and α (e.g., σ2

1(ψ, α) = νσ + (1− α)λσ).
Let (γ̂0, θ̂0) be the one-component MLE that maximizes the one-component likelihood function

L0,n(γ,θ) :=
∑n
i=1 log f(W i;γ,θ). Define the LRTS and the PLRTS of testing H01, respectively,

with a small positivity constant ε on α as

LRn := max
α∈[ε,1−ε]

2{Ln(ψ̂, α)− L0,n(γ̂0, θ̂0)} and PLRn := LRn +

2∑
j=1

pn(σ2
j (ψ̂, α)). (15)

The hard bound is imposed on the values of α in order to avoid an issue of the infinite Fisher
information for testing H02. However, the LRTS may have a reduced power if the true value of α
does not satisfy the constraint [ε, 1 − ε] given an ad hoc constant ε > 0. For this reason, we also
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develop the EM-test in Section 5 which does not impose a direct constraint on the value of α.
With s(W ) in (9), partition I = E[s(W )s(W )>] and define

I =

(
Iη Iηλ
Iλη Iλλ

)
, Iη = E[sη(W )sη(W )>], Iλη = E[sλλ(W )sη(W )>], Iηλ = I>λη,

Iλλ = E[sλλ(W )sλλ(W )>], Iλ,η = Iλλ − IληI−1
η Iηλ, and Gλ,η := (Iλ,η)−1Sλ,η,

where Sλ,η ∼ N(0,Iλ,η). Define a set that characterizes the feasible values of
√
ntλ(λ, α) when

n→∞ by the cone
Λλ =

{√
nα(1− α)v(λ) : λ ∈ Θλ

}
.

Define t̂λ by

rλ(t̂λ) = inf
tλ∈Λλ

rλ(tλ), rλ(tλ) := (tλ −Gλ,η)>Iλ,η(tλ −Gλ,η), (16)

where t̂λ is a projection of a random Gaussian random variableGλ on a cone Λλ.
The following proposition establishes the asymptotic distribution of LRTS or PLRTS under the

null hypothesis H0 : M = 1.

Proposition 4. Suppose that assumptions 1 and 2 hold. Under the null hypothesis H0 : M0 = 1, (a)
t(ψ̂, α) = Op(n

−1/2) for any α ∈ (0, 1), (b) LRn
d→ (t̂λ)>Iλ,η t̂λ and PLRn

d→ (t̂λ)>Iλ,η t̂λ +

plimn→∞
∑2
j=1 pn(σ2

j (ψ̂, α)).

Proposition 4(a) implies that θ̂j − θ∗ = Op(n
−1/4) for j = 1, 2. The n1/4 convergence rate is a

consequence of the linear dependency in (4), where the identification of the parameter θ relies on
the fourth-order Taylor approximation of the log-likelihood function. This rate is also the best con-
vergence rate for an over-parameterized mixture under the strong identifiability condition (Chen,
1995). When we choose the penalty function so that

∑2
j=1 pn(σ2

j (ψ̂, α)) = op(1) under the null
hypothesis of M = 1, PLRn has the same asymptotic null distribution as that of LRn.

4 Likelihood ratio test for H0 : M = M0 against HA : M = M0 + 1

In this section, we build upon the analysis from the previous section and derive the asymptotic
distribution of the PLRTS for testing the null hypothesis of M0 components against an alternative
of (M0 + 1) components, where M0 ≥ 2.

Consider a random sample of n with a panel length of T independent observations {W i}ni=1,
where W i = {(Yit,X>it ,Z

>
it)
>}Tt=1 from an M0-component density fM0(w;ϑM0) defined in equa-

11



tion (17):

fM0(w;ϑ∗M0
) =

M0∑
j=1

α∗jf(w;γ∗,θ∗j ), (17)

where ϑ∗M0
= (θ∗1,θ

∗
2, . . . ,θ

∗
M0
, α∗1, . . . , α

∗
M0−1,γ

∗) ∈ ΘϑM0
and α∗M0

= 1−
∑M−1
j=1 α∗j .

Let the density of the (M0 + 1)-component model be defined by:

fM0+1(w;ϑM0+1) =

M0+1∑
j=1

αjf(w;γ,θj), (18)

where ϑM0+1 = (θ1,θ2, . . . ,θM0+1, α1, . . . , αM0
,γ) ∈ ΘϑM0+1

as defined in (17). We assume µ∗1 <
µ∗2, . . . , < µ∗M0

in the true parameters for identification.
The (M0 + 1)-component model (18) gives rise to the true density (17) in two different cases:

(i) two components have the same mixing parameter, and (ii) one component has zero mixing
proportion. Accordingly, we partition the null hypothesis of H0 : M = M0 into two as H0 =

H01 ∪ H02, with H01 : θh = θh+1 = θ∗h for some h = 1 . . . ,M0, and H02 : αh = 0 for some
h = 1, . . . ,M0 + 1.

We first analyze the infinite Fisher information problem for testing H02. Partition H02 as H02 =

∪M0

h=1H0,2h, where H0,2h : αh = 0. Define the subset of ΘϑM0+1
corresponding to H0,2h as

Υ∗2h = {ϑM0+1 ∈ ΘϑM0+1
: αh = 0; (αj , µj , σj) = (α∗j , µ

∗
j , σ
∗
j ) for j < h;

(αj , µj , σj) = (α∗j−1, µ
∗
j−1, σ

∗
j−1) for j > h}.

The score for testing H0,2h : αh = 0 takes the form ∇αh log fM0+1(W i,ϑM0+1) = [f(W i;µh, σ
2
h)−

f(W i;µ
∗
M0
, σ2∗
M0

)]/fM0
(W i,ϑ

∗
M0

). Because (µh, σ
2
h) is not identified when αh = 0, the Fisher infor-

mation matrix of the LRTS for testing H0,2h : αh = 0 depends on the supremum of the variance of
∇αh log fM0+1(W i;ϑM0+1) over ϑM0+1 ∈ Υ∗2h. The Fisher information is infinite unless there is an
a priori restriction on the values of σ2

j .

Proposition 5. supϑM0+1∈Υ∗2h
E[{∇αh log fM0+1(W i, ϑM0+1)}2] < ∞ if and only if max{σ2 : σ ∈

Θσ} < 2 max{σ2∗
1 , . . . , σ2∗

M0
}.

Since the restriction on the values of σ2
j in Proposition 5 is difficult to justify and not easy to

enforce in practice, we focus on testing H01.
Partition H01 as H01 = ∪M0

h=1H0,1h, where H0,1h : θh = θh+1 with µ1 < · · · < µh = µh+1 <

· · · < µM0+1. We impose these inequality constraints on µj for component identification. There are
M0 ways to describe the M0 component null model in the space of (M0 + 1) component models,
each way corresponding to the null hypothesis of H0,1h : θh = θh+1 for h = 1, 2, ...,M0. Testing
H0,1h : θh = θh+1 in the M0-component null models is similar to testing H01 : θ1 = θ2 in the one

12



component null model in section 3.
Define the subset of ΘϑM0+1

corresponding to H0,1h as:

Υ∗1h :=
{
ϑM0+1 ∈ ΘϑM0+1

: αh + αh+1 = α∗h and θh = θh+1 = θ∗h;γ = γ∗;αj = α∗j

and θj = θ∗j for 1 ≤ j < h;αj = α∗j−1 and θj = θ∗j−1 for h+ 1 ≤ j ≤M0 + 1
} (19)

for h = 1, . . . ,M0. The set Υ∗1 := ∪M0

h=1Υ∗1h corresponds to H01 = ∪M0

h=1H0,1h.
Suppose the null hypothesis of M = M0 holds with the true density (17). Because any parame-

ter in Υ∗1 = ∪M0

h=1Υ∗1h can generate the true density fM0(w;ϑ∗M0
) =

∑M0

j=1 α
j∗
0 f(w;γ∗,θ∗j ), we need

to restrict the estimators under the (M0 + 1)-component model to be in a neighborhood of Υ∗1h in
order to test H0,1h.

Recall that µ∗1 < µ∗2 . . . < µ∗M0
. Let Θµ and Θµ denote the lower bound and upper bounds of Θµ.

Define D∗1 = [Θµ,
µ∗1+µ∗2

2 ]×Θβ ×Θσ2 , D∗h = [
µ∗h−1+µ∗h

2 ,
µ∗h+µ∗h+1

2 ]×Θβ ×Θσ2 for h = 2, . . . ,M0 − 1,

D∗M0
= [

µ∗M0−1+µ∗M0

2 ,Θµ]×Θβ×Θσ2 . Then D∗h ⊂ Θθ is a neighborhood containing θ∗h but not θ∗j for
j 6= h. For h = 1, . . .M0, give a small positive constant ε > 0, define a restricted parameter space
Ψ∗h ⊂ ΘϑM0+1

(ε) as

Ψ∗h =


α1, . . . , αM0+1 ∈ [ε, 1− ε];

M0+1∑
j=1

αj = 1; γ ∈ Θγ ; θ ∈ Θθ : θj ∈ D∗j for j = 1, . . . , h− 1;

θh,θh+1 ∈ D∗h;θj ∈ D∗j−1 for j = h+ 2, . . . ,M0 + 1.


(20)

Note that Ψ∗h ∩Υ∗1h 6= ∅ and Ψ∗h ∩Υ∗1l = ∅ if h 6= l while ∪M0

h=1Ψ
∗
h = ΘϑM0+1

(ε).
Let Ψ̂

∗
h and D̂∗h be consistent estimators of Ψ∗h and D∗h, which can be constructed from a con-

sistent estimator of ϑ∗M0
in the M0-component model. We test H0,1h : θh = θh+1 by estimating the

(M0 + 1)-component model under the restriction that ϑM0+1 ∈ Ψ̂
∗
h.

For h = 1, 2, ...,M0, define the “local” PMLE that maximizes the log-likelihood function of the
(M0 + 1)-component model under the constrain that ϑM0+1 ∈ Ψ̂

∗
h in (20) by

ϑ̂
h

M0+1 = arg max
ϑM0+1∈Ψ̂

∗
h

LM0+1,n(ϑM0+1) + p̃n(ϑM0+1),

where

LM,n(ϑM ) :=

n∑
i=1

log fM (W i;ϑM ) and p̃n(ϑM ) :=

M∑
j=1

pn(σ2
j ; σ̂2

0,j).

with
pn(σ2

j ; σ̂2
0,j) := −an{σ̂2

0,j/σ
2
j + log(σ2

j /σ̂
2
0,j)− 1}, (21)
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where σ̂2
0,j is a root-n consistent estimator of σ2

0,j from M0-component model under the null
hypothesis. Because σ̂2

j − σ2
0,j = Op(n

−1/4) under the null hypothesis (c.f., Proposition 4(a)),
pn(σ̂2

j ; σ̂2
0,j) = op(1) when an is chosen to be o(n1/4).

Under H0 : M = M0, Ψ∗h contains a set of parameters Υ∗1h defined in (19) such that
fM0+1(w;ϑM0+1) is equal to fM0(w;ϑ∗M0

) for any ϑM0+1 ∈ Υ∗1h and is therefore the density func-
tion from which the data is generated. These penalized likelihood estimators are consistent.

Proposition 6. Suppose that Assumption 1 holds. Then, under the null hypothesis H0 : M = M0,
infϑM0+1∈Ψ∗h

|ϑ̂
h

M0+1 − ϑM0+1|
p→ 0 for h = 1, 2, ...,M0.

Consider the local PLRTS for testing H0,1h : ϑh = ϑh+1 defined by

PLRM0,h
n := 2{LM0+1,n(ϑ̂

h

M0+1) + p̃n(ϑ̂
h

M0+1)− LM0,n(ϑ̂M0
)} for h = 1, 2, ...,M0.

The test utilizing the local PLRTS, denoted as PLRM0,h
n , possesses power solely against local

alternatives within the restricted parameter space of Ψ∗h. To guarantee power against local alter-
natives over a wide range of directions, we consider the PLRTS characterized by the maximum of
the local PLRTS for h = 1, ...,M0, as defined by

PLRn(M0) := max{PLRM0,1
n , PLRM0,2

n , ..., PLRM0,M0
n }. (22)

Because ΘϑM0+1
(ε) = ∪M0

h=1Ψ̂
∗
h, PLRn(M0) is identical to maxϑM0+1∈ΘϑM0+1

(ε){LM0+1,n(ϑM0+1) +

p̃n(ϑM0+1)} − LM0,n(ϑ̂M0
).

To derive the asymptotic null distribution of PLRn(M0), collect the score vector for testing
H0,1h for h = 1, . . . ,M0 into one vector as

s̃(W ) =

(
s̃η(W )

s̃λλ(W )

)
, where s̃η(W )

(M0+p+q+1)×1

=

(
sα(W )

s(γ,ν)(W )

)
and s̃λλ(W ) =


s1
λλ(W )

...
sM0

λλ (W )

 ,

(23)
where

sα(W ) =


f(W ;γ∗,θ∗1)− f(W ;γ∗,θ∗M0

)
...

f(W ;γ∗,θ∗M0−1)− f(W ;γ∗,θ∗M0
)


/
fM0

(W ;ϑ∗M0
),

s(γ,ν)(W ) =

M0∑
j=1

α∗j∇(γ,ν)f(W ;γ∗,θ∗j )/fM0
(W ;ϑ∗M0

),

shλλ(W ) = ∇̃θhθ>h f(W ;γ∗,θ∗h)/fM0
(W ;ϑ∗M0

) for h = 1, 2, ...,M0,

(24)
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with ∇̃θhθ>h f(W ;γ∗,θ∗h) := (c11∇θh1θh1f∗, ..., c(q+2)(q+2)∇θh,q+2θh,q+2
f∗, c12∇θh1θh2f∗, ..., c(q+1)(q+2)∇θh,q+1θh,q+2

f∗)>

for θh := (θh1, θh2, θh3, ..., θh,q+2)> := (µh, σ
2
h, βh1, ..., βhq)

> and cjk = 1/2 for j 6= k and cjk = 1

for j = k. Define

Ĩ := E[s̃(W )s̃(W )>], Ĩη := E[s̃η(W )s̃η(W )>], Ĩλη := E[s̃λλ(W )s̃η(W )>],

Ĩηλ := Ĩ>λη, Ĩλλ := E[s̃λλ(W )s̃λλ(W )>], Ĩλ,η := Ĩλλ − ĨληĨ
−1

η Ĩηλ.
(25)

Then, the asymptotic distribution of the normalized score function is given by

S̃n :=
1√
n

n∑
i=1

s̃(W i)
d→ S̃ ∼ N(0, Ĩ),

where, in view of (23), S̃ may be partitioned as S̃ = (S̃
>
η , S̃

>
λλ)> with n−1/2

∑n
i=1 s̃η(W i)

d→ S̃η

and n−1/2
∑n
i=1 s̃λλ(W i)

d→ S̃λλ .
Let S̃λ,η := (S1

λ,η, . . . ,S
M0

λ,η)> := S̃λλ − ĨληĨ
−1

η S̃η ∼ N(0, Ĩλ,η) be a RM0(q+2)(q+1)/2-valued

random vector. For h = 1, 2, ...,M0, define Ĩhλ,η := E[Shλ,η(Shλ,η)>] andGh
λ,η := (Ihλ,η)−1Shλ,η .

Define t̂
h

λ analogously to t̂λ as:

rhλ(t̂
h

λ) = inf
thλ∈Λλ

rh(thλ); rhλ(thλ) := (thλ −G
h
λ,η)>Ihλ,η(thλ −G

h
λ,η) for h = 1, 2, ...,M0. (26)

The local quadratic-form approximation of the log-likelihood function LRM0,h
n around Υ∗1h ⊂

ΘϑM0+1
shares an identical structure to the approximation we derived in Section 3 in testingH01 in

the test of homogeneity. Consequently, we can show that PLRM0,h
n

d→ (t̂
h

λ)>Ihλ,η t̂
h

λ. Then, given
(22), the asymptotic null distribution of the PLRTS for testing H01 is given by the maximum over
(t̂
h

λ)>Ihλ,η t̂
h

λ’s for h = 1, 2, ...,M0.

Assumption 3. (a) α∗j ∈ (ε, 1 − ε) for j = 1, . . . ,M0. (b) Ĩ is non-singular. (c) an in (21) satisfies
an = O(1).

Proposition 7. Suppose that Assumptions 1-3 are satisfied. Then under the null hypothesisH0 : M = M0,
PLRn(M0)

d→ max{(t̂1λ)>I1
λ,η t̂

1

λ, . . . , (t̂
M0

λ )>IM0

λ,η t̂
M0

λ }.

The asymptotic null distribution of PLRn(M0) is non-standard but it is straightforward to
simulate the random variable from the asymptotic null distribution using the estimates. Specifi-
cally, we simulate a draw of S̃λ,η = (S1

λ,η, . . . ,S
M0

λ,η)> from N(0, ˆ̃Iλ,η), where ˆ̃Iλ,η is a sample

analogue estimator of Ĩλ,η . Then, compute Gh
λ,η = (Î

h

λ,η)−1Shλ,η and obtain t̂
h

λ analogously to
(26) using an estimator of Ihλ,η for h = 1, ...,M0, and a simulated random draw is computed as

max{(t̂1λ)>Î
1

λ,η t̂
1

λ, . . . , (t̂
M0

λ )>Î
M0

λ,η t̂
M0

λ }. Appendix B.2-B.3 present an expression for score func-
tions using Hermit polynomials.
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5 EM test for H0 : M = M0 against HA : M = M0 + 1

This section develops an EM test used for testing the hypothesis H0 : M = M0 against the alterna-
tive hypothesis HA : M = M0 + 1. A key limitation of the PLRT, as discussed in the previous sec-
tion, is that the computation of mixing probabilities, denoted as αj , is subject to a hard constraint,
which is dictated by an arbitrary choice of bounds. The EM test, on the other hand, circumvents
the need for imposing an explicit constraint on the αj values. It achieves this by performing a lim-
ited number of EM steps, starting from a predetermined set of αj values. The EM test approach
offers certain advantages, including computational simplicity and less stringent assumptions.

Let T be a finite set of numbers in (0, 0.5] with 0.5 ∈ T , and let p(τ) ≤ 0 be a penalty term that
is continuous in τ , p(0.5) = 0, and p(τ)→ −∞ as τ goes to 0. Specifically, we choose

p(τ) := log(2 min{τ, 1− τ}).

For each τ0 ∈ T , let τ (1)(τ0) = τ0 and define the restricted penalized MLE by

ϑ
h(1)
M0+1(τ0) = arg max

ϑM0+1∈ΘhϑM0+1
(τ)

PLn(ϑM0+1, τ0)

where Θh
ϑM0+1

(τ0) := {θ ∈ Ψ̂h : αh/(αh + αh+1) = τ0} and

PLn(ϑM0+1, τ) := LM0+1,n(ϑM0+1) + p̃n(ϑM0+1) + p(τ).

Starting from (ϑ
h(1)
M0+1(τ0), τh(1)(τ0)) with τh(1)(τ0) = τ0, update ϑh(k)

M0+1(τ0) and τh(k)(τ0) by the
following generalized EM algorithm. Denote the estimators after the k-th round of EM algorithm
iteration by ϑh(k)

M0+1 and τh(k). In the E-step, for i = 1, . . . , N and j = 1, . . . ,M0 + 1, compute the
weight for observation i and type j as:

w
(k)
ij =

{
α

(k)
j f(W i;γ

(k),θ
(k)
j )/fM0+1(W i;ϑ

h(k)
M0+1(τ0)), j = 1, . . . , h− 1,

α
(k)
j−1f(W i;γ

(k),θ
(k)
j )/fM0+1(W i;ϑ

h(k)
M0+1(τ0)), j = h+ 2, . . . ,M0 + 1,

w
(k)
ih = τh(k)α

(k)
h f(W i;γ

(k),θ
(k)
h )/fM0+1(W i;ϑ

h(k)
M0+1(τ0)),

w
(k)
i,h+1 = (1− τh(k))α

(k)
h f(W i;γ

(k),θ
(k)
h+1)/fM0+1(W i;ϑ

h(k)
M0+1(τ0)),

(27)

where, for brevity, we drop the superscript h and its dependency on τ0 from the notations such as
w
h(k)
ij (τ0).
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In the M-step, we update α and τ by

α
(k+1)
j =

1

n

n∑
i=1

w
(k)
ij for j = 1, . . . ,M0 + 1 and

τh(k+1) = arg min
τ

{
n∑
i=1

w
(k)
ih log(τ) +

n∑
i=1

w
(k)
i,h+1 log(1− τ) + p(τ)

}
.

We also update θj and γ as

(σ
(k+1)
j )2 = arg min

σ2
j

{
n∑
i=1

w
j(k)
i

T∑
t=1

(yit − µ(k+1)
j − z>itγ(k+1) − x>itβ

(k+1)
j )2 + pn(σ2

j )

}
,

γ(k+1) =

(
n∑
i=1

T∑
t=1

zitz
>
it

)−1
 n∑
i=1

T∑
t=1

zit

yit −M0+1∑
j=1

w
(k)
ij x̃

>
it

(
µ

(k)
j

β
(k)
j

) , and

(
µ

(k+1)
j

β
(k+1)
j

)
=

(
n∑
i=1

w
(k)
ij

T∑
t=1

x̃itx̃
>
it

)−1( n∑
i=1

w
(k)
ij

T∑
t=1

x̃it(yit − z>itγ(k+1))

)
,

where x̃it = (1,x>it)
>. In the updating procedure, ϑh(k+1)

M0+1 (τ0) is not restricted to be in Ψ̂
∗
h.

For each τ0 ∈ T and each step k, define

Mh(k)
n (τ0) := 2

{
PLn(ϑ

h(k)
M0+1(τ0), τh(k)(τ0))− LM0,n(ϑ̂M0

)
}
. (28)

With a pre-determined finite number K, define the local EM test statistic by taking maximum
of Mh(k)

n (τ0) across different τ0’s as

EMh
n := max{Mh(K)

n (τ0) : τ0 ∈ T }. (29)

The test statistic EMh
n tests H0,1h : θh = θh+1 and has a power against the local alternative that

splits the h-th component of the null M0-component model into two different components. To
achieve power against a wide range of local alternatives, we consider the EM test statistic that
takes the maximum of M0 local EM test statistics:

EMn(M0) := max{EM1(K)
n , . . . , EMM0(K)

n }. (30)

Proposition 8. Suppose that Assumptions 1–3 hold and {0.5} ∈ T . Then, under the null hypothesis
H0 : M = M0, for any finite K, EMn(M0)

d→ max{(t̂1λ)>I1
λ,η t̂

1

λ, . . . , (t̂
M0

λ )>IM0

λ,η t̂
M0

λ }.

Therefore, the asymptotic null distribution of EM test statistic EMn(M0) is the same as that of
the PLRTS.
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6 Asymptotic Distribution under Local Alternatives

We derive the asymptotic distribution of PLRTS and EM test static under local alternatives. For
brevity, we focus on testing H0 : M = 1 against HA : M = 2. Consider the following local alter-
native to the homogeneous model f(w;γ∗,θ∗) with θ∗ = (µ∗, σ∗2, (β∗)>)>. For brevity, we omit
the common parameter γ in this section. In a reparameterized parameter, ψ∗ = ((ν∗)>, (λ∗)>)>.
For α∗ ∈ (0, 1) and a local parameter h = (h>ν ,h

>
λ )> with hλ ∈ v(Θλ), we consider a sequence of

contiguous local alternatives (αn,ψ
>
n )> = (αn,ν

>
n ,λ

>
n ) ∈ Θα ×Θν ×Θλ such that, with tλ(λ, α)

given by (10),

hν =
√
n(νn − ν∗), hλ =

√
ntλ(λn, αn), and αn = α∗ + o(1). (31)

Equivalently, the non-reparameterized contiguous local alternatives are given by

θ1,n = νn + (1− αn)λn and θ2,n = νn − αnλn (32)

for νn = ν∗ + n−1/2hν and λn = (λ1,n, λ2,n, ...., λq+2,n)> with

λj,n = n−1/4(αn(1− αn))−1/2hλ,j for j = 1, ..., q + 2,

where hλ = (h2
λ,1, ..., h

2
λ,q+2, hλ,1hλ,2, ...., hλ,q+1hλ,q+2)>. The local alternatives are of order n1/4

rather than n1/2. See the discussion after Proposition 4.
The following proposition provides the asymptotic distribution of the PLRT and EM test statis-

tics under contiguous local alternatives.

Proposition 9. Suppose that the assumptions in Proposition 8 hold for M0 = 1. Consider a sequence of
contiguous local alternatives ϑ2,n = (αn,θ

>
1,n,θ

>
2,n)> given in (32), where αn and λn satisfy (31). Then,

under H1,n : ϑ = ϑ2,n, we have PLRn(1), EMn(1)
d→ (t̃λ)>Iλ,η t̃λ, where t̃λ has the same distribution

as t̂λ in Proposition 4 but replacingGλ,η with (Iλ,η)−1Sλ,η + hλ.

Importantly, a set of contiguous local alternatives considered in (32) excludes a sequence such
that αn → 0 or 1.

7 Sequential Hypothesis Testing

To estimate the number of components, we sequentially test H0 : M = r against H1 : M = r + 1

starting from r = 1, and then r = 2, . . . , M̄ , where M̄ is the upper bound for the number of com-
ponents, which is assumed to be larger than M0. The first value for r that leads to a nonrejection
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of H0 gives our estimate for M0. Robin and Smith (2000) develops a similar sequential hypothesis
test for estimating the rank of a matrix.

For M = 1, . . . , M̄ , let cM1−qn denote the 100(1 − qn) percentile of the cumulative distribution

function of a random variable max{(t̂1λ)>I1
λ,η t̂

1

λ, . . . , (t̂
M

λ )>IMλ,η t̂
M

λ } for M = M0 in Propositions
7 and 8. Let ĉM1−qn be a consistent estimator of cM1−qn . Then, our estimator based on sequential
hypothesis testing (SHT, hereafter) is defined as

M̂PLR = min
M∈{0,...,M̄}

{M : PLRn(r) ≥ ĉr1−qn , r = 0, . . . ,M − 1, PLRn(M) < ĉM1−qn},

M̂EM = min
M∈{0,...,M̄}

{M : EMn(r) ≥ ĉr1−qn , r = 0, . . . ,M − 1, EMn(M) < ĉM1−qn}. (33)

The estimators M̂PLR and M̂EM depend on the choice of the significance level qn. The following
proposition states that M̂PLR and M̂EM converge to M0 in probability as n → ∞ if we choose qn
such that qn such that −n−1 ln qn = o(1) and qn = o(1).

Let QMn (ϑM ) := n−1
∑n
i=1 ln fM (wi;ϑM ) and QM (ϑM ) := E[ln fM (wi;ϑM )], where

fM (wi;ϑM ) is defined in (1) for M = 1, ..., M̄ .

Assumption 4. For M = 1, ...,M0− 1, (a) QM (ϑM ) has a unique maximum at ϑ∗M in ΘϑM ; (b) ΘϑM is
compact; (c) ϑ∗M is interior to ΘϑM ; (d) BM (ϑ∗M ) := E

{
∇ϑM ln fM (wi;ϑM )∇ϑ>M ln fM (wi;ϑM )

}
is

nonsingular; (e) AM (ϑ∗M ) := E
{
∇ϑMϑ>M ln fM (wi;ϑM )

}
has constant rank in some open neighborhood

of ϑ∗M ; (f) QM+1(ϑ∗M+1)−QM (ϑ∗M ) > 0.

Proposition 10. Suppose that M0 < M̄ and Assumptions 1-4 hold. If we choose qn such that
−n−1 ln qn = o(1) and qn = o(1), then M̂PLR −M0 = op(1) and M̂EM −M0 = op(1).

Assumption 4 (a)-(e) ensure the consistency and asymptotic normality of ϑ̂M , where (c)-(e)
correspond to Assumption A6 of White (1982). Per Assumption 4(f), the Kullback-Leibler Infor-
mation Criterion of the model relative to the true M0 components model strictly decreases as the
number of components M increases, for M < M0.

8 Simulation

In this section, we examine the finite sample performance of the EM test and PLRT by simulation.
We test H0 : M = M0 against H1 : M = M0 + 1 for the model with M0 = 2 and 3.

8.1 Choice of penalty function

We have developed a data-dependent empirical formula for an by selecting a formula that ensures
empirical rejection probabilities match the nominal size (5%) across various null models and sam-
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ple sizes, as reported in Table 11 in Appendix D. Specifically, for the model without conditioning
variables, we have derived the following data-dependent empirical formula for testing the null
hypotheses of M0 = 1, 2, 3, 4:

an =


(

1 + exp

{
ρ̂
M0
1

ρ̂
M0
4

+
ρ̂
M0
2

ρ̂
M0
4

1
T +

ρ̂
M0
3

ρ̂
M0
4

1
n

})−1

, M0 = 1(
1 + exp

{
ρ̂
M0
1

ρ̂
M0
4

+
ρ̂
M0
2

ρ̂
M0
4

1
T +

ρ̂
M0
3

ρ̂
M0
4

1
n +

ρ̂
M0
5

ρ̂
M0
4

log
(

ω(ϑM0
;M0)

1−ω(ϑM0
;M0)

)})−1

, M0 = 2, 3, 4,

(34)

where ω(ϑM0 ;M0) is the misclassification probability as defined in Melnykov and Maitra (2010)
for each of the null models. The parameters ρ̂M0

1 , ρ̂M0
2 , ρ̂M0

3 , ρ̂M0
4 , and ρ̂M0

5 are chosen as fol-
lows. Across different null models, sample sizes, and various candidate values of an, we esti-
mate the empirical rejection probabilities at the 5% significance level by simulations and denote
them by ŝ. For example, when testing H0 : M0 = 2, we repeatedly simulate the 500 datasets
under each of the 48 null model parameters and sample sizes (N,T, α, µ, σ) ∈ {100, 500} ×
{2, 5, 10} × {(0.5, 0.5), (0.2, 0.8)} × {(−1, 1), (−0.5, 0.5), (−0.5, 0.8)} × {(1, 1), (1.5, 0.75), (0.8, 1.2)}
and test the null hypothesis of H0 : M0 = 2 by the EM test using one of the six values of
an ∈ {0.01, 0.05, 0.1, 0.2, 0.3, 0.4}. For each of 108 × 6 = 648 combinations of the parameter
values, sample sizes, and an values, let ŝ denote the fraction of simulated datasets that led to
the rejection of the null hypothesis at 5% significance level. Using these 648 “observations” of
{ŝ, N, T, ω(ϑ2; 2), an}, we run the following regression:

log

(
ŝ

1− ŝ

)
− log

(
0.05

1− 0.05

)

=

ρ
M0
1 + ρM0

2
1
T + ρM0

3
1
n + ρM0

4 log
(

an
1−an

)
, M0 = 1

ρM0
1 + ρM0

2
1
T + ρM0

3
1
n + ρM0

4 log
(

an
1−an

)
+ ρM0

5 log
(

ω(ϑM0
;M0)

1−ω(ϑM0
;M0)

)
, M0 = 2, 3, 4,

where ρ̂M0
1 , ρ̂M0

2 , ρ̂M0
3 , ρ̂M0

4 , and ρ̂M0
5 in (34) denotes the corresponding estimates. Table 12 in the

Appendix reports the estimates. Note that the data-dependent formula (34) is obtained by setting
ŝ = 0.05 and solving for an in the above equation.

For the model with conditioning variables, we find that the value of an that gives accurate Type
I errors is sensitive to the dimension of covariates, and developing a data-dependent empirical
formula for an is difficult. Consequently, we choose a constant value of an that depends only on the
number of components M0 = 1, 2, 3, and 4 as follows: an = 0.1617 if M0 = 1; an = 0.0025 if M0 =

2; an = 0.0567 if M0 = 3; an = 0.4858 if M0 = 4; an = 0.5 if M0 ≥ 5. These penalty terms for the
regression with covariates are chosen by averaging the prediction of the penalty function for the
null parameters used in the simulations. For example, the penalty term for M0 = 2 is chosen by
generating an using the formula for all the combinations of (N,T, α, µ, σ) in Table 11 for M0 = 2
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and taking the average across the predicted ân’s. For M0 ≥ 5, we use the parametric bootstrap
method to obtain the critical values for our empirical application, where we set an = 0.5.

8.2 Simulation results

Table 1 displays the simulated Type I error rates for the EM test when examining the null hy-
pothesis H0 : M = 2 against the alternative hypothesis H1 : M = 3. A total of 2000 repetitions
were employed for the asymptotic distribution, while 1000 repetitions were used for the bootstrap
distribution. Moreover, the PLRT with simulated critical values was considered.

The table presents results for four distinct null models, as explained in the table’s footnote.
Utilizing the asymptotic distribution, the EM test sizes generally approximate the nominal 5%
level. Nonetheless, the test may be undersized in instances where T ≥ 5. Furthermore, the test
size is larger when the mixing proportions are equal (α = (0.5, 0.5)) in comparison to when they
are unequal (α = (0.2, 0.8)). The bootstrapped EM test demonstrates satisfactory performance.

For the PLRT, 2000 repetitions were conducted, and results were reported for cases where a
constraint was applied to αj ∈ [ε, 1 − ε] with ε = 0.1. The value of an for the PLRT was chosen to
be ten times larger than its value for the EM test. The findings suggest that the PLRT is slightly
oversized.

Table 2 reports the rejection frequency of testing H0 : M0 = 2 under 12 alternative three-
component mixture models, as elaborated in the table’s footnote. For both EM test and PLRT,
the test power is greater when distances between µj ’s are larger and equal, such as (µ1, µ2, µ3) =

(−1, 0, 1) or (−1.5, 0, 1.5), as opposed to unbalanced distances like (−1, 0, 2) or (−0.5, 0, 1.5). The
power is also improved when the mixture probabilities are equal (α = (1/3, 1/3, 1/3)) rather than
unequal (α = (1/4, 1/2, 1/4)). The power increases with both the time-dimension T and cross-
sectional sample size N . Reflecting a larger actual rejection frequency of the PLRT under H0 :

M0 = 2 in Table 1, the power of the PLRT is often higher than that of the EM test, although the EM
test sometimes has higher power, especially when the mixing probabilities are unequal.

Table 3 displays the simulated Type I error rates of the EM test using the asymptotic distribu-
tion for testing H0 : M0 = 3 against H1 : M0 = 4. Six null models are considered with varying
(α1, α2, α3) and (µ1, µ2, µ3) values. The EM test generally yields accurate Type I errors.

The Type I error rates of the EM test with conditioning variables under the null M0 = 2 are
examined using 500 repetitions. Results presented in Table 4 indicate a slightly oversized test for
small samples with (N,T ) = (200, 2), but overall, the finite sample properties are satisfactory.

In our empirical application examining production function heterogeneity in Japan and Chile,
we find evidence that the number of components is frequently greater than five when we sequen-
tially apply our EM test to estimate the number of components. Consequently, we also investigate
the performance of the sequential hypothesis testing (SHT) using the EM test in comparison to the
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AIC and the BIC when the data is generated from a five-component model in a realistic setting.
Specifically, we simulate 100 datasets from the estimated five-component model of the Chilean
textile industry in our empirical application and apply these three methods to select the number
of components in each of the 100 datasets. Here, we apply the EM test at the 5 percent significance
level to sequentially test the null hypothesis H0 : M = M0 for M0 = 1, 2, ..., 7, and we determine
the number of components to be M0 when we fail to reject H0 : M = M0 as in (33).

Table 5 presents the frequency at which the three methods select the number of components
in this simulation. The table demonstrates that the proposed sequential hypothesis test selects
the correct number of components 72 % of the time, while it underestimates the true number of
components 25 % of the time. Conversely, the AIC overestimates the number of components 86 %
of the time, and the BIC underestimates the number of components by selecting a four-component
model 41 % of the time, accurately estimating the number of components 58% of the time. Overall,
in this simulation, our proposed sequential hypothesis testing approach outperforms both the AIC
and the BIC.
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Table 1: Sizes (in %) of EM test and PLRT of H0 : M0 = 2 against HA : M0 = 3 at the 5% level

EM Test EM Test PLRT

Asymptotic Parametric Bootstrap Asymptotic
T 3 5 8 3 5 8 3 5 8
N 200 400 200 400 200 400 200 400 200 400 200 400 200 400 200 400 200 400

(A,C) 5.3 4.8 4 3.8 4 2.95 4.6 6.2 6.2 4.6 4.8 5.2 7.7 6.6 6.75 6.7 6.5 5.5
(A,D) 5.9 4.9 5 5 4.45 4 5.4 4.8 5.2 5.6 5 5.8 5.4 5.15 5.1 6.1 5.55 6.2
(B,C) 3.8 2.5 3.45 3.05 3.6 3.25 3.6 5.6 4.2 5.2 4 5.4 6.25 5.45 6.45 6.05 5.05 6
(B,D) 4.8 4.6 3.5 3.15 3.55 3.95 3.6 3.6 5.8 4 6.2 4.6 2.35 4.4 3.9 4.85 4.95 5.2

1 A and B refer to respectively (α1, α2) = (0.5, 0.5) and (0.2, 0.8), while C and D refer to (µ1, µ2) = (−1, 1) and (−0.5, 0.5),
respectively.
2 The variance is set to (σ1, σ2) = (0.8, 1.2). The asymptotic simulations are based on 2000 repetitions and the bootstrap simu-
lation is based on 1000 repetitions.
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Table 2: Powers (in %) of EM test and PLRT of H0 : M0 = 2 against HA : M0 = 3 at the 5% level

A B

N 100 500 100 500

T 2 5 2 5 2 5 2 5

EM test

(C,G) 20.9 81.6 57.6 100.0 20.5 82.7 62.6 100.0
(C,H) 49.2 99.9 99.9 100.0 38.4 98.7 98.8 100.0
(C, I) 12.1 20.4 18.0 62.6 10.6 20.4 16.8 65.8
(D,G) 77.9 100.0 100.0 100.0 86.5 100.0 100.0 100.0
(D,H) 57.4 100.0 100.0 100.0 42.8 100.0 100.0 100.0
(D, I) 16.0 59.5 31.8 99.9 13.8 70.8 40.3 100.0
(E,G) 93.0 100.0 100.0 100.0 94.0 100.0 100.0 100.0
(E,H) 83.8 100.0 100.0 100.0 70.7 100.0 100.0 100.0
(E, I) 25.7 97.0 80.2 100.0 30.7 96.8 83.1 100.0
(F,G) 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0
(F,H) 93.5 100.0 100.0 100.0 85.3 100.0 100.0 100.0
(F, I) 40.8 99.9 98.2 100.0 52.1 100.0 99.5 100.0

PLRT

(C,G) 22.7 85.1 56.5 100.0 23.2 82.6 58.7 100.0
(C,H) 57.1 100.0 99.8 100.0 43.2 99.7 99.1 100.0
(C, I) 12.0 21.0 12.4 66.1 11.3 22.1 12.4 69.3
(D,G) 79.9 100.0 100.0 100.0 87.6 100.0 100.0 100.0
(D,H) 65.3 100.0 100.0 100.0 49.1 100.0 100.0 100.0
(D, I) 14.8 63.6 28.6 100.0 13.6 75.2 36.7 100.0
(E,G) 91.5 100.0 100.0 100.0 93.7 100.0 100.0 100.0
(E,H) 86.8 100.0 100.0 100.0 75.9 100.0 100.0 100.0
(E, I) 28.7 97.2 77.7 100.0 33.0 97.9 85.5 100.0
(F,G) 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0
(F,H) 96.4 100.0 100.0 100.0 89.5 100.0 100.0 100.0
(F, I) 45.7 100.0 98.4 100.0 57.2 100.0 99.8 100.0

Notes: A and B refer to (α1, α2, α3) = (1/3, 1/3, 1/3) and (1/4, 1/2, 1/4), respectively; C,D,E,and
F refer to (µ1, µ2, µ3) = (−0.5, 0, 1.5), (−1, 0, 1), (−1, 0, 2), (−1.5, 0, 1.5), respectively; G,H, I refer
to (σ1, σ2, σ3) = (0.6, 0.6, 1.2), (0.6, 1.2, 0.6), (1, 1, 1).
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Table 3: Sizes (in %) of EM test of H0 : M0 = 3 against HA : M0 = 4 at 5% level

(A,C) (A,D) (A,E) (B,C) (B,D) (B,E)

100,2 5.95 5.15 5.05 5.05 5.85 4.40
500,2 5.60 5.55 5.25 5.10 5.65 4.05
100,5 4.30 6.00 4.20 5.15 5.10 5.70
500,5 4.20 4.55 3.95 4.50 4.15 4.15

Notes: A and B refer to (α1, α2, α3) = (1/3, 1/3, 1/3) and (0.25, 0.5, 0.25), respectively, while
C,D,E refer to (µ1, µ2, µ3) = (−4, 0, 4), (−4, 0, 6) and (−6, 0, 6), respectively. The variance is set
to (σ1, σ2, σ3) = (0.75, 1.5, 0.75). The asymptotic simulations are based on 2000 repetitions and the
bootstrap simulation is based on 1000 repetitions.

Table 4: Sizes of EM test of H0 : M0 = 2 against HA : M0 = 3 with conditioning variables

(A,C,E) (A,C, F ) (A,D,E) (A,D,F ) (B,C,E) (B,C, F ) (B,D,E) (B,D,F )

(N,T )

(200, 2) 8.4 8.2 7.4 8.8 8.6 8.2 7.4 3.6
(500, 2) 4.6 3.2 3.2 2.2 4.8 4.8 3.6 3.6
(200, 5) 4.0 1.8 3.0 2.6 2.2 2.0 2.2 3.2
(500, 5) 2.2 1.2 1.6 1.4 3.0 2.0 1.8 2.0

Notes: A and B refer to (µ1, µ2) = (−1, 1) and (−0.5, 0.5), respectively, while C and D refer to
(β1, β2) = (1, 1) and (−1, 1), respectively. E and F refer to (σ1, σ2) = (0.3, 0.1) and (0.1, 0.1). The
mixing proportion is set to (α1, α2) = (0.2, 0.8). The asymptotic simulations are based on 500
repetitions.
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Table 5: Frequency of Number of Components with the Simulated Data

M 1 2 3 4 5 6 7

SHT with EM test 0 0 0 0.26 0.72 0.02 0
AIC 0 0 0 0.01 0.13 0.31 0.55
BIC 0 0 0 0.41 0.58 0.01 0

1 The data are generated using the estimated parameters based on the Chilean textile industry with five-components and
panel length T = 3, where (α1, α2, α3, α4, α5) = (0.16076522, 0.32454077, 0.09025875, 0.35478905, 0.06964622),
(µ1, µ2, µ3, µ4, µ5) = (−1.241241,−0.33803875, 0.4480291, 0.52379553, 1.4139465), (β1, β2, β3, β4, β5) =

(0.451833,−0.05988709,−0.2453261,−0.03106076, 0.2053708), (σ1, σ2, σ3, σ4, σ5) =

(0.9933480, 0.4585760, 0.9954302, 0.4116855, 0.1863346). We use the panel length and sample size that are equal to those
in the dataset, i.e., n = 196 and T = 3.
2 The results are based on 100 repetitions.
3 Each cell indicates the proportion of times that the model selection indicates a M -component model.

9 Empirical Application

In this section, we conduct an empirical application of our proposed test for the number of com-
ponents in a finite mixture production function model, the identification of which is analyzed in
Kasahara et al. (2022). Specifically, we estimate the number of types of input elasticities in produc-
tion functions using panel data from Japanese publicly traded firms in the machinery industry, as
well as data from Chilean manufacturing firms.

9.1 Production Function and First Order Condition

Consider the input and output panel data of n firms over T years, {{Yit, Vit, Lit,Kit}Tt=1}Ni=1,
where Yit, Vit Lit, Kit represent the output, intermediate input, labor, and capital of firm i in
year t, respectively. We denote the logarithm of corresponding variables by lowercase letters as
(yit, vit, lit, kit), with, for example, yit = log(Yit).

We employ a finite mixture specification to capture unobserved heterogeneity in a firm’s input
elasticities. We are interested in testing the number of production technology types. Assume
there are M discrete types of production technologies and define the latent random variable Di ∈
{1, 2, . . . ,M} to represent the production technology type of firm i. If Di = j, then firm i is of type
j. The population proportion of type j is denoted by αj = Pr(D = j). The production function for
type j is Cobb-Douglas and the output is related to inputs as

Yit = exp (εit)F
j
t (Vit, Lit,Kit, ωit) (35)
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with

F jt (Vit, Lit,Kit, ωit) := exp(γjt + ωit)V
δv,j
it L

δ`,j
it K

δk,j
it ,

where γjt represents the aggregate productivity shock of type j in year t; ωit is the serially corre-
lated productivity shock; and εit is the idiosyncratic productivity shock.

We assume that an intermediate input Vit is flexibly chosen by firm i after observing aggregate
shock γjt and serially correlated productivity shock ωit. The variable εit represents a mean-zero
i.i.d. random variable, the realization of which is unknown when the intermediate input V is
selected. Denote the information available to a firm for making decisions on Vit by Iit.Denote the
information available to a firm for making decisions on Vit by Iit.

In order to identify the intermediate input elasticity of the production function, we introduce
the following assumptions (c.f., Kasahara et al. (2022)).

Assumption 5. (a) Each firm belongs to one of M types, and the probability of being type j is given by
αj = P (Di = j) with

∑M
j=1 αj = 1. (b) For the jth type of production technology at time t, the output

is expressed in terms of input as in (35), where εit ∼ N(0, σ2
j ) are i.i.d across i’s and t’s. ωit follows an

exogenous first-order stationary Markov process given by ωit = hj(ωit−1) + ηit where, conditional on
Iit−1, ηit is a mean-zero i.i.d. random variable. (c) (γjt , ωit) ∈ Iit and εit 6∈ Iit.

Assumption 6. (a) Firms are price-takers in both output and input markets, where PY,t and PV,t are the
prices of output and intermediate input in year t. (b) (PY,t, PV,t) are observed by firms at the beginning of
the period before Vit is chosen.

Assumption 7. Vit’s are chosen at time t by maximizing the expected profit conditional on information Iit
at time t and conditional on the value of (Kit, Lit). The profit maximization problem for firms with type j
technology is given by

Vit = arg max
V

PY,tE[exp(εit)|Di = j]F jt (V,Kit, Lit, ωit)− PV,tV. (36)

In Assumption 5(a), each firm’s production function belongs to one of the M types. Assump-
tion 5(b) assumes that the idiosyncratic productivity shock follows a normal distribution. As-
sumption 5(c) assumes that both the aggregate shock γjt and the serially correlated productivity
shock ωit are observed when intermediate inputs are chosen, but idiosyncratic productivity shocks
are unknown. Assumption 6 states that firms observe input and output prices when deciding on
Vit. Assumption 7 assumes that Vit is chosen to maximize the current expected period profit con-
ditional on the value of (Kit, Lit).4

4We are agnostic about the timing of choosing Kit and Lit as long as they are either determined before Vit or si-
multaneously chosen with Vit. It is reasonable to assume that capital input Kit is determined before the value of Vit is
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Given the above assumptions 5, 6, and 7, we derive an empirical specification based on the
first-order condition of the profit maximization problem (36), following the idea developed by
Gandhi et al. (2020) and extending to a finite mixture production function modeled by Kasa-
hara et al. (2022). Note that E[exp(εit)|Di = j] = exp(σ2

j /2) for εit ∼ N(0, σ2
j ). Then, because

δv,j =
∂F ji (Vit,Kit,Lit)/∂Vit

F ji (Vit,Kit,Lit)/Vit
for the Cobb-Douglas production function, the first-order condition with

respect to Vit in (36) together with the production function (35) implies that:

sit = log δv,j +
1

2
σ2
j − εit for Di = j, (37)

where
sit := log

(
PV,tVit
PY,tYit

)
is the logarithm of the ratio of intermediate input cost to revenue.

Collect the observed data as W i = {sit, logKit}Tt=1. Let µj = log δv,j + 1
2σ

2
j and de-

fine a type-specific parameter to be θj = (µj , σj), where δv,j can be identified from θj as
δv,j = exp(µj − σ2

j /2). Collect the parameters of each type and the mixing probability as

ϑM = (α1, . . . , αM−1,θ
>
1 , . . . ,θ

>
M )>. Recall that εit

iid∼ N(0, σ2
j ) over i and t conditional on the

technology type Di = j. Then, from (37), we can write the density function of si1, ..., siT as a
mixture of type-specific likelihood density similar to the density function in equation (1):

fM (W i;ϑM ) =

M∑
j=1

αj

T∏
t=1

1

σj
φ

(
sit − µj
σj

)
. (38)

The penalized maximum likelihood estimator is defined as

ϑ̂M = arg max
ϑM

n∑
i=1

log fM (W i;ϑM ) + p̃n(ϑM ).

As an alternative specification, we allow the elasticity of output for intermediate input to be
a function of logKit as log δv,j = β0,j + βk,j logKit. This results in the logarithm of the ratio of
intermediate input cost to revenue being linearly related to logKit as sit = µj + βk,j logKit − εit
for Di = j with µj = β0,j + 1

2σ
2
j . In this case, the conditional density function of {sit}Tt=1 given

{logKit}Tt=1 is

fM (W i;ϑM ) =

M∑
j=1

αj

T∏
t=1

1

σj
φ

(
sit − µj − βk,j logKit

σj

)
. (39)

chosen. On the other hand, labor input Lit may be flexibly chosen simultaneously with Vit after γjt and ωit are observed.
Even when labor input is simultaneously chosen with intermediate input, equation (36) and the corresponding first-order
condition characterize the intermediate input choice once we interpret Lit in (36) as the optimal value chosen by firm i as
discussed in Ackerberg et al. (2015).
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In addition, we consider a specification in which we include not only logKit but also logLit as a
regressor:

fM (W i;ϑM ) =

M∑
j=1

αj

T∏
t=1

1

σj
φ

(
sit − µj − βk,j logKit − β`,j logLit

σj

)
. (40)

9.2 Empirical result

We apply the EM test to two producer-level data sets to determine the number of production
technology types. We used the production data from the Japanese publicly traded firms from 2003
to 2007 and the Chilean manufacturing plants from 1992 to 1996.5 We cleaned the data and used the
firms/plants with continuous data entry for five years to ensure that we had balanced panel data.
We focus on the three largest industries in terms of the number of firms and plants for each country
(chemical, machine, and electronics for Japan and food products, fabricated metal products, and
textiles for Chile). Table 6 presents the summary statistics for the revenue share of intermediate
materials and the log of gross output in these industries. The within-industry standard deviations
of the revenue share of intermediate materials are substantial across all industries, suggesting that
intermediate input elasticities differ across firms within the narrowly defined industries.

5Please refer to Kasahara et al. (2021) and Kasahara and Rodrigue (2008) for the details of the datasets of the Japanese
publicly traded firms and the Chilean manufacturing plants, respectively.
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Table 6: Descriptive statistics for the revenue share of intermediate material and the log of gross
output for the Japanese firms and the Chilean plants

Panel A: : Japanese publicly traded firms
PV,tVit
PY,tYit

log(Yit)

Industry NObs n mean sd mean sd

Chemical 805 161 0.34 0.15 17.52 1.24
Machine 790 158 0.50 0.16 17.31 1.35
Electronics 775 155 0.45 0.18 17.54 1.27

Panel B: Chilean plants
PV,tVit
PY,tYit

log(Yit)

Industry NObs n mean sd mean sd

Food products 4645 929 0.65 0.15 10.62 1.66
Fabricated metal products 1260 252 0.53 0.18 11.00 1.37
Textiles 1130 226 0.58 0.19 11.01 1.32

1 The summary statistics are based on the Japanese firm-level data from 2003 to 2007 and
the Chilean plant-level data from 1992 - 1996. All observations with log(Vit/Yit) ≤ −3 and
log(Vit/Yit) > log(2) are removed. The data set is a balanced panel, i.e., we kept firms/plants that
are continuously observed for these five years.
2 The variable PV,tVit

PY,tYit
is defined as the revenue share of the intermediate input, where PV,t is the

average price of the intermediate input at time t, PY,t is the average price of the output, Vit is the
quantity of the intermediate input and Yit is the quantity of the output.
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Table 7: The EM test for Japanese producer without conditioning variables

M=1 M=2 M=3 M=4 M=5

T = 3

Chemical EM 436.37∗∗∗ 239.83∗∗∗ 130.1∗∗∗ 126.4∗∗∗ 63.24∗∗∗

BIC 805.55 383.43 157.5 41.62 -70.46

Electronics EM 563.94∗∗∗ 186.67∗∗∗ 115.82∗∗∗ 81.06∗∗∗ 47.76∗∗∗

BIC 814.01 264.27 91.67 -10.39 -77.2

Machine EM 434.91∗∗∗ 194.48∗∗∗ 72.83∗∗∗ 56.94∗∗∗ 54.77∗∗∗

BIC 458.72 37.85 -142.28 -200.74 -242.71

T = 4

Chemical EM 629.22∗∗∗ 308.6∗∗∗ 181.39∗∗∗ 177.38∗∗∗ 96.35∗∗∗

BIC 1071.45 456.54 162.15 -4.99 -168.01

Electronics EM 803.15∗∗∗ 282.32∗∗∗ 167.83∗∗∗ 106.43∗∗∗ 89.93∗∗∗

BIC 1081.48 292.68 24.54 -484.46

Machine EM 620.95∗∗∗ 292.52∗∗∗ 118.37∗∗∗ 102.57∗∗∗ 75.32∗∗∗

BIC 609.1 2.14 -276.04 -380.16 -467.96

T = 5

Chemical EM 818.38∗∗∗ 386.08∗∗∗ 219.13∗∗∗ 209.42∗∗∗ 118.25∗∗∗

BIC 1331.53 527.48 155.86 -48.53 -243.73

Electronics EM 1024.86∗∗∗ 375.29∗∗∗ 226.01∗∗∗ 134.53∗∗∗ 126.36∗∗∗

BIC 1343.12 332.61 -28.32 -239.31 -359.17

Machine EM 819.98∗∗∗ 389.69∗∗∗ 156.44∗∗∗ 149.98∗∗∗ 96.32∗∗∗

BIC 775.75 -30.17 -406.59 -548.81 -683.96

1 The estimation is based on the revenue share of intermediate material. 2 ∗, ∗∗, ∗∗∗ indicate the result is
significant at 10%, 5% and 1% levels respectively.

31



Table 8: The EM test for Chilean producer without conditioning variables

M=1 M=2 M=3 M=4 M=5

T = 3

Food products EM 805.51∗∗∗ 637.77∗∗∗ 204.92∗∗∗ 80.54∗∗∗ 72.41∗∗∗

BIC 422.55 -371.13 -991.96 -1176.61 -1236.82

Fabricated metal products EM 238.84∗∗∗ 68.91∗∗∗ 26.24∗∗∗ 24.42∗∗∗ 21.82∗∗∗

BIC 719.74 496.49 444.02 433.01 425

Textiles EM 229.87∗∗∗ 146.17∗∗∗ 64.76∗∗∗ 27.06∗∗∗ 29.98∗∗

BIC 635.37 418.28 288.34 236.9 223.34

T = 4

Food products EM 1165.08∗∗∗ 874.27∗∗∗ 257.49∗∗∗ 130.61∗∗∗ 139.59∗∗∗

BIC 419.47 -730.83 -1586.11 -1825.87 -1938.03

Fabricated metal products EM 362.1∗∗∗ 120.7∗∗∗ 41.6∗∗∗ 43.68∗∗∗ 20.95∗∗∗

BIC 905.9 559.3 453.41 427.34 399.82

Textiles EM 325.17∗∗∗ 222.28∗∗∗ 74.19∗∗∗ 47.58∗∗∗ 51.65∗∗∗

BIC 821.73 510.98 303.8 243.51 210.77

T = 5

Food products EM 1553.9∗∗∗ 1010.31∗∗∗ 290.02∗∗∗ 172.46∗∗∗ 155.25∗∗∗

BIC 471.66 -1066.71 -2057.71 -2329.38 -2484.82

Fabricated metal products EM 478.94∗∗∗ 176.5∗∗∗ 58.96∗∗∗ 59.37∗∗∗ 33.19∗∗∗

BIC 1101.11 637.21 477.1 433.62 389.54

Textiles EM 428.29∗∗∗ 280.46∗∗∗ 103.41∗∗∗ 56.63∗∗∗ 53.57∗∗∗

BIC 968.16 556.01 289.55 201.41 160

1 The estimation is based on the revenue share of intermediate material. 2 ∗, ∗∗, ∗∗∗ indicate the result is
significant at 10%, 5% and 1% levels respectively.

To determine the number of components, we test the null hypothesis H0 : M = M0 against
H1 : M = M0 + 1 by applying the EM test at the 5 percent significance level sequentially for
M0 = 1, . . . , 5. If we fail to reject the null hypothesis at a certain M0 = M , then we conclude
that there are M types of intermediate input elasticities. We consider both the models without
conditioning variable (38) and the models with conditioning variable (39)-(40).

Table 7 and 8 report the result of the EM test for the model without conditioning variable (38)
from the Japanese and the Chilean industries, respectively, with the panel length of T = 3, 4, 5

and the null model of M = 1, ..., 5. For all industries in both countries and all panel lengths, we
reject the null hypothesis of H0 : M = M0 for all M0 = 1, 2, 3, 4, and 5 at five percent signifi-
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cance level, indicating that the number of types for intermediate input elasticities is at least five
types. This result reflects a considerable and persistent heterogeneity in the revenue share of inter-
mediate materials across firms or plants, providing strong evidence for substantial heterogeneity
in intermediate input elasticities across firms’ production functions in Japanese and Chilean pro-
ducers. Our findings serve as a caution against the conventional empirical practice of estimating
the Cobb-Douglas production function, which assumes that the elasticity parameters are common
across firms. Given the strong evidence of heterogeneity in production function coefficients, incor-
porating heterogeneity in production function coefficients in empirical applications is warranted
and should be encouraged.

On the other hand, one possible reason for the estimated number of technology types being
greater than five is that the assumption of the Cobb-Douglas production function may be too
restrictive. When the production function is not Cobb-Douglas, the revenue share of intermediate
materials generally depends on the value of production inputs (Gandhi et al., 2020). For this
reason, we test the number of technology types when the revenue share of intermediate materials
depends on the value of capital input as well as labor input by estimating the models (39)-(40).

Table 9 presents the results of the sequential hypothesis test and the BIC when estimating the
mixture regression model with logKit in (39) using data with a panel length of T = 3. For the
Japanese Chemical, Electronics, and Machinery industries, the sequential hypothesis test suggests
that the data is generated from seven to nine-component models; concurrently, the BIC selects
models with at least ten components. For the Chilean Food industry, the sequential test indicates a
ten-component model, while the BIC chooses an eight-component model. In contrast, the sequen-
tial hypothesis test and the BIC, respectively, select models with seven and six components for the
Chilean Fabricated Metal Products industry and the Chilean Textile industry.

Table 10 reports the results for the model that includes both logKit and logLit as regressors.
Across six industries, both the results of the sequential hypothesis test and the BIC in Table 10
select models with at least five components, providing evidence for substantial heterogeneity in
production technology across firms and plants. Comparing the results of Table 10 with those
of Table 9, the selected number of components for the model with logKit and logLit is smaller
than that for the model with only logK. This suggests that the number of components may be
overestimated if we do not consider a sufficiently flexible production function specification by
excluding some regressors.
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Table 9: The EM test and the BIC (Dependent Variable: log
PV,tVit
PY,tYit

, Regressor: logKit)

M0 1 2 3 4 5 6 7 8 9 10

Japanese Chemical

EM 459.4∗∗∗ 236.36∗∗∗ 125.42∗∗∗ 118.36∗∗∗ 87.63∗∗∗ 53.72∗∗∗ 38.69∗∗∗ 34.07∗∗ 36.47 -
BIC 1384.76 943.61 726.53 620.32 518.86 449.92 413.49 394.46 381.48 366.09

Japanese Electronics

EM 560.06∗∗∗ 213.82∗∗∗ 116.29∗∗∗ 78.81∗∗∗ 47.05∗∗∗ 40.77∗∗∗ 27.4∗∗ 29.02 - -
BIC 1332.14 788.19 593.44 495.74 434.15 406.77 385.45 372.63 367.31 351.17

Japanese Machine

EM 433.19∗∗∗ 202.92∗∗∗ 80.42∗∗∗ 76.82∗∗∗ 53.83∗∗∗ 34.62∗∗ 55.65 - - -
BIC 1355.6 940.49 757 696.06 638.48 617.4 588.94 568.71 555.15 544.51

Chilean Food Products

EM 816.06∗∗∗ 489.37∗∗∗ 169.14∗∗∗ 80.88∗∗∗ 80.63∗∗∗ 52.67∗∗∗ 31.29∗∗∗ 17.16∗∗ 20.55∗∗∗ −60.46

BIC 6759.39 5962.74 5499.3 5356.47 5301.31 5241.91 5210.27 5200.71 5210.77 5222.29

Chilean Fabricated Metal Products

EM 199.35∗∗∗ 63.25∗∗∗ 49.24∗∗∗ 30.27∗∗∗ 15.73∗∗ 18.25∗∗ 10.88 - - -
BIC 1923.64 1744.72 1699.97 1670.93 1661.03 1659.54 1665.08 1669.02 1680.96 1695.54

Chilean Textile

EM 201.86∗∗∗ 95.17∗∗∗ 61.43∗∗∗ 31.17∗∗∗ 14.12∗ 17.45∗∗ 7.94 - - -
BIC 1681.91 1499.99 1424.93 1380.93 1368.65 1364.94 1365.72 1370.72 1382.83 1392.24

1 The estimation is based on the revenue share of intermediate material using the panel data of length T = 3.
2 ∗, ∗∗, ∗∗∗ indicate the result is significant at 10%, 5% and 1% levels respectively.
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Table 10: The EM test and the BIC (Dependent Variable: log
PV,tVit
PY,tYit

, Regressors: logKit and logLit)

M0 1 2 3 4 5 6 7 8 9 10

Japanese Chemical

EM 412.35∗∗∗ 224.09∗∗∗ 141.59∗∗∗ 132.24∗∗ 121.56 - - - - -
BIC 1294.05 905.44 705.72 587.3 490.07 479.74 389.05 390.29 382.28 372.69

Japanese Electronics

EM 573.11∗∗∗ 218.38∗∗∗ 116.07∗∗∗ 94.76∗∗ 47.73 - - - - -
BIC 1336.69 784.95 590.73 498.55 426.23 389.91 372.05 371.64 359.15 368.25

Japanese Machine

EM 468.06∗∗∗ 204.01∗∗∗ 93.35∗∗∗ 81.62∗∗∗ 62.00∗∗∗ 37.04∗∗∗ 14.21 - - -
BIC 1360.56 915.69 736.2 676.26 625.66 596.45 564.34 548.7 536.78 539.64

Chilean Food Products

EM 805.09∗∗∗ 478.64∗∗∗ 177.08∗∗∗ 84.13∗∗∗ 80.96∗∗∗ 51.97∗∗∗ 32.3∗∗ 19.50 - -
BIC 6732.11 5952.7 5506.55 5362.27 5309.37 5257.78 5233.37 5229.9 5242.9 5258.41

Chilean Fabricated Metal Products

EM 204.45∗∗∗ 63.57∗∗∗ 49.42∗∗∗ 28.61∗∗∗ 18.32 - - - - -
BIC 1926.06 1747.29 1709.44 1685.39 1678.71 1680.54 1685.02 1696.19 1703.21 1723.56

Chilean Textile

EM 203.69∗∗∗ 90.69∗∗∗ 58.4∗∗∗ 32.55∗∗∗ 16.19 - - - - -
BIC 1673.99 1495.55 1431.18 1394.54 1382.59 1373.03 1368.8 1382.42 1394.3 1394.09

1 The estimation is based on the revenue share of intermediate material using the panel data of length T = 3.
2 ∗, ∗∗, ∗∗∗ indicate the result is significant at 10%, 5% and 1% levels respectively.
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10 Conclusion

The selection of the number of components in a finite normal mixture panel regression model
is a crucial practical issue that must be addressed with care. Arbitrarily choosing the number
of components can result in biased estimates, invalid inference, and reduced credibility of the
final outcomes. To tackle this issue, this study proposes the PLRT and an EM test and derives
their asymptotic distribution for the null hypothesis of a model with M0 components against the
alternative hypothesis with (M0 + 1) components. We also develop a procedure to consistently
select the number of components by sequentially applying the PLRT and EM tests. Through a
simulation exercise, we demonstrate that the proposed sequential hypothesis testing procedure
exhibits good performance in finite samples.

As an empirical application, we estimate the number of production technology types using
producer-level panel data from Japan and Chile. We find that most industries in our dataset exhibit
a level of heterogeneity that requires a five or more-component mixture model when using the
Cobb-Douglas production specification or a specification in which the elasticity of inputs depends
on capital and labor input linearly. This suggests strong evidence for the presence of unobserved
heterogeneity in technology types. One important caveat of our empirical exercise is that the
class of production functions we investigate may be restrictive. Investigating production function
heterogeneity with more flexible function forms is an important future research topic.
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A Proofs of propositions

Proof of Proposition 1. We first consider a model with intercept parameter and variance parameter
but without covariates with Wi = {yit}Tt=1.

Define

s2
i =

1

T − 1

T∑
t=1

(Yit − Ȳi)2 with Ȳi =
1

T

T∑
t=1

Yit,

where s2
i follows the chi-square distribution with the T − 1 degrees of freedom. Let i∗ =

arg mini=1,...,n{s2
i } so that s2

i∗ = min{s2
1, . . . , s

2
n} be the minimum of s2

i across all i’s. We consider a
sequence of parameters ϑ2,n = (αn,θ

>
1,n,θ

>
2,n)> with αn = 1/n, θ1,n = (µ1,n, σ

2
1,n)> = (Ȳi∗ , s

2
i∗)
>,

and θ2,n = θ∗ = (µ∗, σ∗)> for all n. Because LR∗n(ϑ2,n) ≤ LR∗n(ϑ̃2,n), it suffices to show that
LR∗n(ϑ2,n) is unbounded in probability.

Define

`(W i;θ) := log f(W i;θ) = −T
2

log σ2 − T

2
log(2π)− 1

2

T∑
t=1

(
Yit − µ
σ

)2

.

Then, the likelihood ratio test statistic for a two-component mixture is written as:

LR∗n(ϑ2,n) = 2

{
n∑
i=1

log

(
αn

T∏
t=1

1

σ1,n
φ

(
Yit − µ1,n

σ1,n

)
+ (1− αn)

T∏
t=1

1

σ∗
φ

(
Yit − µ∗

σ∗

))
−

n∑
i=1

`(W i;θ
∗)

}
= 2

∑
i6=i∗
{log (exp(logαn + `(W i;θ1,n)) + exp(log(1− αn) + `(W i;θ

∗)))− `(W i;θ
∗)}

+ 2 {log (exp(logαn + `(W i∗ ;θ1,n)) + exp(log(1− αn) + `(W i∗ ;θ
∗)))− `(W i∗ ;θ

∗)} .
(41)

The first term on the right hand side of (41) can be re-written as:

= 2(n− 1) log

(
n− 1

n

)
+ 2

∑
i 6=i∗

log

(
1 +

1

n− 1
exp(`(W i;θ1,n)− `(W i;θ

∗))

)
,

which is bounded from below by −1 as n → ∞ because limn→∞ 2(n − 1) log
(
n−1
n

)
= −1 and

log
(

1 + 1
n−1 exp(`(W i;θ1,n)− `(W i;θ

∗))
)
≥ 0 for all n.

The second term on the right-hand side of (41) is written as

2{− log n+ `(W i∗ ;θ1,n)}+ 2 log (1 + (n− 1) exp(`(W i∗ ;θ
∗)− `(W i∗ ;θ1,n)))− 2`(W i∗ ;θ

∗),

(42)

where 2{− log n + `(W i∗ ;θ1,n)} diverges to infinity as n → ∞ by Lemma 1, while the second
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term in (42) is bounded below from zero and the third term, is bounded in probability because
`(W i∗ ;θ

∗) = Op(1). Therefore, for any M < ∞, we have Pr
(
LR∗n(ϑ2,n) ≤ M

)
→ 0 as n → ∞.

The stated result follows from LR∗n(ϑ2,n) ≤ LR∗n(ϑ̃2,n) for all n.
For a model with covariates, we may consider a sequence of parameters ϑ2,n =

(αn,θ
>
1,n,θ

>
2,n,γ

>
n )> with αn = 1/n, θ1,n = (µ1,n, σ

2
1,n,β

>
1,n)> = (Ȳi∗ − Z̄

>
i∗γ
∗, s2

i∗ ,0
>)> with

Z̄i∗ = (1/T )
∑T
t=1Zit, θ2,n = θ∗ = (µ∗, σ∗, (β∗)>)>, and γn = γ∗. Then, repeating the above

argument, the state result follows.

Proof of Proposition 2. The stated result follows from repeating the proof of Proposition 6.

Proof of Proposition 3. The proof follows that of Proposition 2 in Kasahara and Shimotsu (2012). For
a vector x and a function f(x), let∇xkf(x) denote its k-th derivative with respect to x, which can
be a multidimensional array. Observe that, for any finite k and for a neighborhood N of ψ∗, we
obtain

E||∇ψkg(W i;ψ
∗, α)/g(W i;ψ

∗, α)||2 <∞,

E|| sup
ψ∈Θψ∩N

∇ψk log g(W i;ψ, α)||2 <∞, (43)

because each element of∇ψk log g(y|x, z;ψ, α) is written as a sum of products of Hermite polyno-
mials. Note also that the following holds:

∇ηλjLn(ψ∗, α) = 0, ∇λiλjλkLn(ψ∗, α) = Op(n
1/2), (44)

∇ηηλiLn(ψ∗, α) = Op(n), ∇ηηηLn(ψ∗, α) = Op(n), (45)

where equation (44) follows from Proposition 3(a)(c) and (43) while equation (45) is a simple con-
sequence of (43). Furthermore, for a neighborhood N of ψ∗,

sup
ψ∈Θψ∩N

∣∣∣n−1∇(4)Ln(ψ, α)− E∇(4) log g(W i;ψ, α)
∣∣∣ = op(1), (46)

E∇(4)g(W i;ψ, α) is continuous in ψ∈ Θψ ∩N . (47)

Equations (46) and (47) follow from Lemma 2.4 of Newey and McFadden (1994) and the fact that
∇ψk log g(w;ψ, α) is written as a sum of products of Hermite polynomials.

Taking a fourth-order Taylor expansion of Ln(ψ, α) around ψ∗ and using (43) and (44), we can
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write Ln(ψ, α)− Ln(ψ∗, α) as the sum of relevant terms and the remainder term as follows:

Ln(ψ, α)− Ln(ψ∗, α) =

∇ηL∗n(η − η∗) +
1

2!
(η − η∗)>∇ηη>L∗n(η − η∗) +

1

2!

q+2∑
i=1

q+2∑
j=1

∇λiλjL∗nλiλj (48)

+
3

3!

q+2∑
i=1

q+2∑
j=1

(η − η∗)>∇ηλiλjL∗nλiλj (49)

+
1

4!

q+2∑
i=1

q+2∑
j=1

q+2∑
k=1

q+2∑
`=1

∇λiλjλkλ`L∗nλiλjλkλ` +Rn(ψ, α), (50)

where ∇L∗n denotes the derivative of Ln(ψ, α) evaluated at (ψ∗, α). In view of (44)-(45), the re-
mainder term is written as

Rn(ψ, α) = Op(n
1/2)

q+2∑
i=1

q+2∑
j=1

q+2∑
k=1

λiλjλk +Op(n)

(
q+2∑
i=1

||η − η∗||2λi + ||η − η∗||3
)

(51)

+Op(n)

q+2∑
i=1

q+2∑
j=1

q+2∑
k=1

(
||η − η∗||4 + ||η − η∗||3|λi|+ ||η − η∗||2|λiλj |+ ||η − η∗|||λiλjλk|

)
(52)

+
1

4!

q+2∑
i=1

q+2∑
j=1

q+2∑
k=1

q+2∑
`=1

{∇λiλjλkλ`Ln(ψ†, α)−∇λiλjλkλ`Ln(ψ∗, α)}λiλjλkλ` (53)

with ψ† being between ψ and ψ∗. Because ||
√
nt(ψ, α)||2 = n||η − η∗||2 + n

∑q+2
i=1

∑i
j=1 α

2(1 −
α)2|λiλj |2, the right hand side of (51) and the terms in (52) are bounded by Op(1)(||

√
nt(ψ, α)|| +

||
√
nt(ψ, α)||2)(||η−η∗||+ ||λ||). In view of (46) and (47), (53) is bounded by ||

√
nt(ψ, α)||2[d(ψ†)+

op(1)] with d(ψ†)→ 0 asψ† → ψ∗, where a function d(ψ†) corresponds to n−1E[∇λiλjλkλ`Ln(ψ†, α)−
∇λiλjλkλ`Ln(ψ∗, α)]. Therefore, Rn(ψ, α) = (1 + ||

√
nt(ψ, α)||)2[d(ψ†) + op(1) + Op(||ψ − ψ∗||)],

and part (a) follows.
Part (b) follows from Lemman 3(c)(d), the Lindeberg-Levy central limit theorem, and the finite-

ness of I in part (c).
For part (c), we first provide the formula of In. Partition In as

In =

(
Iηn Iηλn
I>ηλn Iλn

)
, Iηn : (p+q+2)× (p+q+2), Iηλn : (p+q+2)×qλ, Iλn : qλ×qλ,

where qλ represents the number of unique terms in
∑q+2
i=1

∑q+2
j=1

∑q+2
k=1

∑q+2
`=1 λiλjλkλ`. Iηn

is given by Iηn = −n−1∇ηη>Ln(ψ∗, α). For Iηλn, let Aij = n−1∇ηλiλjLn(ψ∗, α)
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and write the term in (49) as (n/2)
∑q+2
i=1

∑q+2
j=1(η − η∗)>Aijλiλj = n

∑q+2
i=1

∑i
j=1 cij(η −

η∗)>Aijλiλj , where the cij ’s are defined when we introduce ∇̃θθ>f∗ after (9). Then, by
defining Iηλn = −(c11A11, . . . , cqqAqq, c12A12, . . . , cq−1,qAq−1,q)/α(1 − α), the term in (49)
equals −n(η − η∗)>Iηλn[α(1 − α)v(λ)]. For Iλn, define Bijk` = n−1(8/4!)∇λiλjλkλ`Ln(ψ∗, α)

so that the first term in (50) is written as (n/8)
∑q+2
i=1

∑q+2
j=1

∑q+2
k=1

∑q+2
`=1 Bijk`λiλjλkλ` =

(n/2)
∑q+2
i=1

∑i
j=1

∑q+2
k=1

∑k
`=1 cijck`Bijk`λiλjλkλ`. Define Iλn such that the (ij, k`)’s element of

Iλn is−cijck`Bijk`/α2(1−α)2, where the ij’s run over {(1, 1), . . . , (q, q), (1, 2), . . . , (q−1, q)}. Then,
the first term in (50) equals−(n/2)[α(1−α)v(λ)]′Iλn[α(1−α)v(λ)]. With this definition of In, the
expansion (48)-(50) is written as (12) in terms of

√
nt(ψ, α).

We now show that In →p I . Iηn →p Iη holds trivially. For Iηλn, it follows from
Lemma 3(c) and the law of large numbers thatAij →p −E[∇ηl(W ;ψ∗, α)∇λiλj l(W ;ψ∗, α)], giving
Iηλn →p E

[
sηs

>
λλ/α(1− α)

]
= Iηλ. For Iλn, Lemma 3(d) and the law of large numbers imply

that
∑q+2
i=1

∑q+2
j=1

∑q+2
k=1

∑q+2
`=1 Bijk`λiλjλkλ` →p

−
∑q+2
i=1

∑q+2
j=1

∑q+2
k=1

∑q+2
`=1 E[∇λiλj l(W ;ψ∗, α)∇λkλ` l(W ;ψ∗, α)]λiλjλkλ`, where the factor (8/4!) =

1/3 in Bijk` and the three derivatives on the right hand side of Lemma 3(d) cancel each other.
Therefore, we have Iλn →p E

[
sλλs

>
λλ/α

2(1− α)2
]

= Iλ, and In →p I follows.
We complete the proof of part (c) by showing that I = E[s(W )s(W )>] is finite and non-

singular. Note that s(W ) can be expressed in Hermite polynomials as in (74). Then, the finiteness
of I follows from Assumption 2(a) and the definition of Hermite polynomials.

To show that I is positive definite, it suffices to show that there exists no multi-collinearity in
s(w). Suppose, on the contrary, that s(w) is multi-collinear and that there exists a non-zero vector
a that solves the equation a>s(w) = 0 for all values of w. Partition s(w) as s(w) = (s>(µ), s

>
(β))
>

with s(µ) = (sµ, sσ, sλµµ , sλµσ , sλσσ )> and s(β) = (s>β , s
>
γ , s

>
λµβ

, s>λσβ , s
>
λββ

)>, where s(w) is defined
in (9) and (74). Similarly, partition a as a = (a>(µ),a

>
(β))
> so that

a>s(w) = a>(µ)s(µ) + a>(β)s(β). (54)

By Assumption 2(b) and the property of Hermite polynomials, if a>s(w) = 0 for all w, then
a(β) = 0.

Then, in view of (54), the stated result follows if we can show that a>(µ)s(µ) = 0 for allw implies
a(µ) = 0. Suppose that

a>(µ)s(µ) = aµ

T∑
t=1

H1∗
i,t + (aσ + aλµµ)

T∑
t=1

H2∗
i,t +

aλµµ
2

T∑
t=1

∑
s6=t

H1∗
i,tH

1∗
i,s

+ aλµσ

T∑
t=1

H3∗
i,t + aλµσ

T∑
t=1

∑
s6=t

H1∗
i,tH

2∗
i,s + 3aλσσ

T∑
t=1

H4∗
i,t +

aλσσ
2

T∑
t=1

∑
s6=t

H2∗
i,tH

2∗
i,s = 0
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for all w, where Hj∗
i,t for j = 1, 2, 3 is defined in (73) in Appendix B.2.

Because the above equation hold for all values of w, with the property of the Hermite polyno-
mials, we have aµ = 0, (aσ + aλµµ) = 0, aλµµ = 0, aλµσ = 0, aλσσ = 0. This implies that a(µ) = 0.
Therefore, there exists no multi-collinearity in s(w), and I is non-singular, proving part (c).

Proof of Proposition 4. The proof is similar to that of Proposition 3 in Kasahara and Shimotsu (2015).
The proof of part (a) closely follows the proof of Theorem 1 of Andrews (1999). Let T n :=

I1/2
n

√
nt(ψ̂α, α). Then, in view of (12), we have

op(1) ≤ Ln(ψ̂α, α)− Ln(ψ∗, α)

= T ′nI
−1/2
n Sn −

1

2
||T n||2 +Rn(ψ̂α, α)

= Op(||T n||)−
1

2
||T n||2 + (1 + ||I−1/2

n T n||)2op(1)

= ||T n||Op(1)− 1

2
||T n||2 + op(||T n||) + op(||T n||2) + op(1),

where the third equality holds because I−1/2
n Sn = Op(1) and Rn(ψ̂α, α) = op((1 + ||I−1/2

n T n||)2)

from Propositions 2 and 3. Rearranging this equation yields ||T n||2 ≤ 2||T n||Op(1)+op(1). Denote
the Op(1) term by ςn. Then, (||T n|| − ςn)2 ≤ ς2n + op(1) = Op(1); taking its square root gives
||T n|| ≤ Op(1). In conjunction with In →p I , we obtain

√
nt(ψ̂α, α) = Op(1), and part (a) follows.

For part (b), noting that Ln(ψ∗, α) = L0,n(γ∗0,θ
∗
0), write

LRn = max
α∈[ε,1−ε]

2{Ln(ψ̂α, α)− Ln(ψ∗, α)} − 2{L0,n(γ̂0, θ̂0)− L0,n(γ∗0,θ
∗
0)}. (55)

Define

Sn =

(
Sηn

Sλn

)
:=

(
n−1/2

∑n
i=1 sη(W i)

n−1/2
∑n
i=1 sλλ(W i)

)
,
Sλ,ηn := Sλn − IληI−1

η Sηn, Gλ,ηn := I−1
λ,ηSλ,ηn,

tη,λ := tη − IηI−1
ηλtλ(λ, α),

and split the quadratic form in (12) to obtain

2{Ln(ψ, α)− Ln(ψ∗, α)} = Bn(
√
ntη,λ) + Cn(

√
ntλ(λ, α)) +Rn(ψ, α), (56)

where

Bn(tη,λ) = 2t>η,λSηn − t>η,λIηtη,λ,

Cn(tλ) = 2t>λSλ,ηn − t>λIλ,ηtλ
= G>λ,ηnIλ,ηGλ,ηn − (tλ −Gλ,ηn)>Iλ,η(tλ −Gλ,ηn),

(57)
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with Gλ,ηn
d→ Gλ,η = (Iλ,η)−1Sλ,η and Sλ,ηn

d→ Sλ,η ∼ N(0,Iλ,η). Also, Rn(ψ̂α, α) = op(1)

holds from Proposition 3(a) and
√
nt(ψ̂α, α) = Op(1).

Because ∆(γ,θ)f(x; γ̂∗0, θ̂
∗
0) is identical to ∆ηf(x;ψ∗, α), a standard analysis gives 2[L0,n(γ̂0, θ̂0)−

L0,n(γ∗0,θ
∗
0)] = maxtη Bn(

√
ntη) + op(1). Note that the possible values of both

√
ntη and

√
ntη,λ

approaches Rq+2. Therefore, in view of (56)-(57), we can write equation (55) as

LRn = Cn(
√
ntλ(λ̂, α)) + op(1), (58)

where λ̂ is defined in (14).
The asymptotic distribution of LRn follows from applying Theorem 3(c) of (Andrews, 1999,

p.1362) to (56) and (58). First, Assumption 2 of Andrews (1999) holds because Assumption 2*
of Andrews (1999) hold because of Proposition 2(a). Second, Assumption 3 of Andrews (1999)
holds with BT = n1/2 and T = n because Sλ,ηn

d→ Sλ,η ∼ N(0,Iλ,η) and Iλ,η is non-
singular. Assumption 4 of Andrews (1999) holds from part (a). Assumption 5 of Andrews
(1999) follows from Assumption 5* and Lemma 3 of Andrews (1999) with bT = n1/2 because
α(1 − α)v(Θλ) is locally equal to Λλ. Therefore, it follows from Theorem 3(c) of Andrews (1999)
that Cn(

√
ntλ(λ̂, α))

d→ (t̂λ)>Iλ,η t̂λ, where t̂λ is defined by (16).

Proof of Proposition 5. Under H2,0, we obtain the ϑM0+1 ∈ Υ∗2h,

E[{∇αh log fM0+1(W i, ϑM0+1)}2]

=

∫ {f(w;µh,σh)− f(w;µ∗M0
,σ∗M0

)}2∑M0

j=1 α
∗
jf(w;µ∗j ,σ

∗
j )

dw

=

∫
{f(w;µh,σh)}2∑M0

j=1 α
∗
jf(w;µ∗j ,σ

∗
j )
dw +

∫ {f(w;µ∗M0
,σ∗M0

)}2∑M0

j=1 α
∗
jf(w;µ∗j ,σ

∗
j )
dw − 2

∫
f(w;µh,σh)f(w;µ∗M0

,σ∗M0
)∑M0

j=1 α
∗
jf(w;µ∗j ,σ

∗
j )

dw.

(59)

The latter two terms on the right-hand side of (59) are bounded because f(w;µ∗M0
,σ∗M0

)/
∑M0

j=1 α
∗
jf(w;µ∗j ,σ

∗
j ) ≤

(1/α∗M0
) for any w and f(w;µ, σ) integrates to one. Therefore, the left-hand side of (59) goes to

infinity if and only if the first term on the right-hand side of (59) goes to infinity.
Because maxj αj ≤

∑M0

j αj ≤M0 maxj αj , we obtain

1

M0

{f(w;µh,σh)}2

maxj{α∗jf(w;µ∗j ,σ
∗
j )}
≤ {f(w;µh,σh)}2∑M0

j=1 α
∗
jf(w;µ∗j ,σ

∗
j )
≤ {f(w;µh,σh)}2

maxj{α∗jf(w;µ∗j ,σ
∗
j )}

.

Without loss of generality, we assume that σ∗M0
= max{σ∗1 , . . . , σ2

M0
} and the maximum is

unique. Then there exists M ∈ (0,∞), such that maxj{α∗jf(w,µ∗j ,σ
2
j )} = α∗M0

f(w,µ∗M0
,σ2

M0
)
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when |yt| > M ∀t = 1, . . . , T . Note that

{f(w;µh,σh)}2

f(w;µ∗M0
,σ∗M0

)}
=

T∏
t=1

(σ∗M0
)2

(2π)1/2σ2
h

exp

{
− 1

σ2
h

(yt − µh)2 +
1

2(σ∗M0
)2

(yt − µ∗M0
)2

}

=
(σ∗M0

)2T

(2π)1/2σ2T
h

exp

{
− 1

σ2
h

T∑
t=1

(yt − µh)2 +
1

2(σ∗M0
)2

T∑
t=1

(yt − µ∗M0
)2

}
.

(60)

The stated result follows because the integral of this over |y| ≥ M is finite if σ2
h/σ

2∗
M0

< 2 and
infinite if σ2

h/σ
2∗
M0

> 2. When σ2
h/σ

2∗
M0

= 2, it is finite if µh = µ∗M0
and infinite if µh 6= µ∗M0

.

Proof of Proposition 6. Our panel data model can be viewed as a special case of the T -dimensional
multivariate normal mixture models, where the variance-covariance matrix for each component
is given by a T × T diagonal matrix, Σj := diag(σ2

j , . . . , σ
2
2). Chen and Tan (2009) provides the

consistency proof for the penalized maximum likelihood estimator for a multivariate normal mix-
ture under their conditions C1-C3 for the penalty function but Alexandrovich (2014) identifies a
soft spot in the proof of Chen and Tan (2009) and provides an alternative consistency proof by
strengthening the condition C3 of Chen and Tan (2009). Their pn(G) and p̃n(G) correspond to our
p̃n(ϑ2) and pn(ϑ2), respectively; consequently, the condition C1 and C2 in Chen and Tan (2009)
and a version of condition C3 strengthned by Alexandrovich (2014) can be stated in our notation
as follows:

C1. The penalty function is written as p̃n(ϑM ) =
∑M
j=1 pn(σ2

j )

C2. For any fixed ϑM with σ2
j > 0 for j = 1, 2, ...,M , we have p̃n(ϑM ) = o(n) and

supϑM∈ΘM
max{0, p̃n(ϑM )} = o(n). In addition, p̃n(ϑM ) is differentiable with respect to

ϑM and as n→∞,∇ϑM p̃n(ϑM ) = o(n1/2) at any fixed ϑ such that σ2
j > 0 for j = 1, 2, ...,M.

A version of C3 by Alexandrovich (2014). For large enough n, pn(σ2
j ) ≤

(
3
4

√
n log log n

)
log(σ2

j ),
when σ2

j < cn−2 for some c > 0.

The consistency of the PMLE, ϑ̂M0
and ϑ̂M0+1, follows from Theorems 1 and 3 of Chen and Tan

(2009) and Corollary 3 of Alexandrovich (2014) if we can show that the above three conditions hold
for our penalty function (3). Given (3), C1 trivially holds. Under Assumption 1(b), C2 also holds
because an = O(n1/4−ζ) with ζ > 0 implies an = o(n) or o(n1/2), and ∆σ2

j
p̃n(ϑ) = −an(−σ2

0/(σ
2
j )+

1/σ2
j ) = o(n1/4) if σ2

j > 0. For C3, suppose that σ2
j < n−2. Then, because an = o(n1/4)

and an > 0, pn(σj) = −an
(
σ−2
j σ2

0 + 2 log(σj/σ0)− 1
)
< −cn

(
n9/4σ2

0 − 2n5/4 log(nσ0)− n1/4
)
<(

3
4

√
n log log n

)
2 log(n) when n is large enough, where cn is a sequence of positive numbers that

are bounded. Therefore, p̃n(ϑM ) satisfies the above three conditions, and the stated result fol-
lows follows from Theorems 1 and 3 of Chen and Tan (2009) and Corollary 3 of Alexandrovich
(2014).
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Proof of Proposition 7. For h = 1, . . . ,M0, let N ∗h ⊂ ΘϑM0+1
(ε) be a sufficiently small closed neigh-

bourhood of Υ∗1h such that αh, αh+1 > 0 hold and Υ∗1k 6⊂ N ∗h if k 6= h. Consider the fol-
lowing one-to-one reparameterization from the (M0 + 1)-component model parameter ϑM0+1 =

(α1, . . . , αM0 ,θ
>
1 , . . . ,θ

>
h ,θ

>
h+1, . . . ,θ

>
M0+1,γ

>)>. Similarly to (5), the one-to-one reparamteriza-
tion for testing the null hypothesis H0,1h is given by(

λh

νh

)
:=

(
θh − θh+1

τθh + (1− τ)θh+1

)
so that

(
θh

θh+1

)
=

(
ν + (1− τ)λ

ν − τλ

)

and reparameterize αj for j = 1, 2, ...,M0 as

(π1, . . . , πh−1, πh, πh+1, . . . , πM0−1) = (α1, . . . , αh−1, (αh + αh+1), αh+2, . . . , αM0
)

τ = αh/(αh + αh+1)

so that πh = αh + αh+1 and πM0
= 1−

∑M0−1
j=1 πj .

Collect the reparameterized parameters except τ as

ψh,τ = (η>,λ>h )> with η = (π1, . . . , πM0−1,θ
>
1 , . . . ,θ

>
h−1,ν

>
h ,θ

>
h+2, . . . ,θ

>
M0+1,γ)>.

In the reparameterized model, the null restriction θh = θh+1 implied by H0,1h holds if and only if
λh = 0. Under H0,1h, we have λ∗h = 0 and η∗ = (α∗1, ..., α

∗
M0−1, (θ

∗
1)>, . . . , (θ∗M0

)>, (γ∗)>)>. Define
the log-likelihood under the reparameterized parameters as

fhM0+1(w;ψh,τ , τ) = πhg
h(w,ψh,τ , τ) +

h−1∑
j=1

πjf(w;γ,θj) +

M0∑
j=h

πj+1f(w;γ,θj+1),

where gh(w,ψh,τ , τ) is defined similarly to (6) as

gh(w,ψh,τ , τ) = τf(w;γ,νh + (1− τ)λh) + (1− τ)f(w;γ,νh − τλh). (61)

Define the local penalized MLE of ψh,τ by

ψ̂h,τ := arg max
ψh,τ∈N∗h

Lhn(ψh,τ , τ) +

M0∑
j=1

pn(σ2
j (ψh,τ , τ)), (62)

where Lhn(ψh,τ , τ) :=
∑N
i=1 log gh(W i;ψh,τ , τ) and σ2

j (ψh,τ , τ) is the value of σ2
j implied by the

value ofψh,τ and τ . Becauseψ∗h,τ is the only parameter value inN ∗h that generates the true density,
ψ̂h,τ −ψ

∗
h,τ = op(1) follows Proposition 4.

For ε ∈ (0, 1/2), define the LRTS for testing H0,1h as LRM0,h
n := maxτ∈[ε,1−ε] 2(Lhn(ψ̂h,τ , τ) −
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L0,n(ϑ̂M0)) Because σ̂2
j − σ2

0,j = Op(n
−1/4) under the null hypothesis (c.f., Proposition 4(a)), we

have p̃n(ϑM0+1) = op(1) by Assumption 3(c), and PLRM0,h
n − LRM0,h

n = op(1) follows for h =

1, ...,M0.
Then, in view of (22), the stated result holds if

(LRM0,1
n , . . . , LRM0,M0

n )>
d→ (t̂

1

λ)>I1
η,λ(t̂

1

λ), . . . , (t̂
M0

λ )>IM0

η,λ(t̂
M0

λ ))>. (63)

Observe that Lhn(ψh,τ , τ)−Lhn(ψ∗h,τ , τ) admits the same expansion as Ln(ψ̂, α)−Ln(ψ∗, α) in (13)
and (56) by replacing (α, t(ψ, α), tλ(λ, α),Sn,Gn,In, Rn(ψ, α)) with (τ, th(ψh, τ), thλ(λh, τ),Shn,G

h
n,I

h
n, R

h
n(ψh, τ)),

where (Shn,I
h
n) is defined similarly to (Sn,In) but replacing (sη, sλλ) with (s̃η, s

h
λλ) while

Gh
n := (Ihn)−1Shn. Applying the proof of Proposition 3, we have Shn

d→ Sh ∼ N(0,Ih) and
Ihn

p→ Ih. Then, (62) follows from the proof of Propositions 3 and 4 for each local penalized
MLE by replacing (Gn, t̂λ,Iλ,η) with (Gh

n, t̂
h

λ,I
h
λ,η), and collecting the results while noting that

(S1
n, ...,S

M0
n )

d→ (S1, ...,SM0).

Proof of Proposition 8. The proof is similar to that of Proposition 7 in Kasahara and Shimotsu (2015).
Let ωhn denote the sample counterpart of (t̂

h

λ)>Ihλ,η t̂
h

λ in Proposition 7 such that the LRTS satisfies
2{Lhn(ψ̂h,τ , τ) − L0,n(ϑ̂M0

)} = ωhn + op(1), where ψ̂h,τ is the local penalized MLE as defined (62)
and ωhn is defined similarly to Cn(

√
ntλ(λ̂, α)) in (58) but replacing (tλ(λ̂, α),Sn,Gn,Iλ,η) with

(thλ(λ̂
h
, τ),Sn,G

h
n,I

h
λ,η) defined in the proof of Proposition 7.

First, we show that Mh(1)
n (τ0) = 2{PLhn(ϑ

h(1)
M0+1(τ0), τ0) − L0,n(ϑ̂M0)} = ωhn + p(τ0) + op(1).

Define ϑh∗M0+1(τ0) by the value of ϑM0+1 in Θh
ϑM0+1

(τ0) := {ϑ ∈ Ψ∗h : αh/(αh + αh+1) = τ0}.
Because ϑh∗M0+1(τ0) is the only value of ϑM0+1 that yields the true density if ϑM0+1 ∈ Ψ∗h in
(20) and αh/(αh + αh+1) = τ0, ϑh(1)

M0+1(τ0) equals a reparameterized penalized local MLE in the
neighborhood of ϑh∗M0+1(τ0), and ϑh(1)

M0+1(τ0) − ϑh∗M0+1(τ0) = op(1) holds in view of Proposition
6. Furthermore, by the consistency of σh(1)

j and an = O(1), we have p̃(ϑh(1)
M0+1(τ0))

p→ 0. There-
fore, Mh(1)

n (τ0) = ωhn + p(τ0) + op(1) follows from repeating the proof of Proposition 7. Finally,
EM

(1)
n

d→ maxM0

h=1{ωhn} holds because {0.5} ∈ T and p(0.5) = 0.
We proceed to show thatMh(K)

n (τ0) = ωhn+p(τ0)+op(1) for any finiteK. Because a generalized
EM step never decreases likelihood (Dempster et al., 1977), we have

PLn(ϑ
h(K)
M0+1(τ0), τh(K)(τ0)) > PLn(ϑ

h(1)
M0+1(τ0), τh(1)(τ0)). (64)

Therefore, it follows from Theorem 1 of Chen and Tan (2009), Lemma 4 in Appendix B, and
induction that ϑh(K)

M0+1(τ0) − ϑh∗M0+1 = op(1) for any finite K. Let ϑ̃
h

M0+1 be the maximizer
of PLM0+1(ϑM0+1, τ

h(K)(τ0)) under the constraint of αh/(αh + αh+1) = τh(K)(τ0) in an arbi-
trary small neighbourhood of ϑh∗M0+1(τ (K)). Then, 2{PLhn(ϑ̃

h

M0+1, τ
h(K)(τ0)) − L0,n(ϑ̂M0

)} =

ωhn + p(τ0) + op(1) holds from the definition of ϑ̃
h

M0+1 and p̃(ϑ̃
h

M0+1)
p→ 0 by repeating the proof
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of Proposition 7. It also follows from the consistency of ϑh(K)
M0+1(τ0) that PLn(ϑ̃

h

n, τ
h(K)(τ0)) ≥

PLn(ϑ
h(K)
M0+1(τ0), τh(K)(τ0)) + op(1). Therefore, in view of (64), we have

PLn(ϑ̃
h

n, τ
h(K)(τ0)) ≥ PLn(ϑ

h(K)
M0+1(τ0), τh(K)(τ0)) + op(1) ≥ PLn(ϑ

h(1)
M0+1(τ0), τh(1)(τ0)). (65)

Finally, because 2{PLn(ϑ̃
h

M0+1, τ
h(K)(τ0))−L0,n(ϑ̂M0

)} = ωhn+p(τ0)+op(1) and 2{PLn(ϑ
h(1)
M0+1(τ0), τh(1)(τ0))−

L0,n(ϑ̂M0
)} = ωhn + p(τ0) + op(1), it follows from (65) that Mh(K)

n (τ0) = 2{PLn(ϑ
h(K)
M0+1(τ0)) −

L0,n(ϑ̂M0
)} = ωhn + p(τ0) + op(1) holds for all h. The stated result then follows from the definition

of EM (K)
n and {0.5} ∈ T .

Proof of Proposition 9. Let ψn = ((ν∗)>,λ>n )> be the value of ψ under H1,n : ϑ = ϑ2,n and let
h = (0>,h>λ )>, where hλ is defined by (31). Let Pϑ be the probability measure on {W i}ni=1 under
ϑ. Denote the log-likelihood ratio of Pϑ2,n

to Pϑ∗2 by log
(
dPϑn
dPϑ∗

)
= Ln(ψn, α

∗)−Ln(ψ∗, α∗). Then,
it follows from (12) and Proposition 3 that

log
dPϑ2,n

dPϑ∗2
= hSn − h>Ih/2 + op(1) under Pϑ∗2 . (66)

Furthermore, because Sn
d→ N(0,I) under Pϑ∗2 , dPϑn

dPϑ∗
converges in distribution under Pϑ∗2 to

exp(N(µ, σ2)) with µ = −(1/2)h>Ih and σ2 = h>Ih so that E(exp(N(µ, σ2)) = 1. Consequently,
Pϑ2,n is mutually contiguous with respect to Pϑ∗2 from Le Cam’s First Lemma (see, e.g., Corollary
12.3.1 of Lehmann and Romano, 2005) and, in view of (66), we have Sn

log
dPϑ2,n

dPϑ∗2

 d→ N

((
0

−(1/2)h>Ih

)
,

(
I Ih
h>I h>Ih

))
under Pϑ∗2 .

and
Sn

d→ N(Ih,I) under Pϑ2,n

from Le Cam’s Third Lemma (see, e.g., 12.3.2 of Lehmann and Romano, 2005). Therefore, the proof
of Proposition 4 goes through under Pϑ2,n

if we replace Sλ,ηn
d→ Sλ,η with Sλ,ηn

d→ Sλ,η+ (Iλ−
IηλI−1

η Iηλ)hλ = Sλ,η + Iλ,ηhλ, and the stated result follows.

Proof of Proposition 10. We provide a proof for M̂ PLR. The consistency proof for M̂EM is similar.
We first prove that, when M < M0, Pr(PLRn(M) > ĉM1−qn) → 1 as n → ∞. Let Q̃Mn (ϑM ) :=

QMn (ϑM ) +n−1p̃n(ϑM ) for M ≥ 2. By Assumptions 3(c) and 4(b), n−1p̃n(ϑM )
p→ 0 uniformly over

ΘϑM . Then, it follows from Lemma 2.4 of Newey and McFadden (1994) that

sup
ϑM∈ΘϑM

|Q̃Mn (ϑM )−QM (ϑM )| = op(1), (67)
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and Assumption 4(a)(b) and the standard consistency proof (e.g., Theorem 2.1 of Newey and Mc-
Fadden, 1994) give ϑ̂M

p→ ϑ∗M for M < M0. Furthermore, by Assumption 3(c), n−1/4∇p̃n(ϑM ) =

op(1) uniformly over ΘϑM , and it follows from the argument in Theorem 3.2 of White (1982) that

√
n(ϑ̂M − ϑ∗M )

p→ N(0, AM (ϑ∗M )−1BM (ϑ∗M )AM (ϑ∗M )−1). (68)

Then, from (67), (68), and the mean value expansion, we have Q̃Mn (ϑ̂M ) − QM (ϑ∗M ) =

Op(n
−1/2), and

PLRn(M)

n
:= Q̃M+1

n (ϑ̂M+1)− Q̃Mn (ϑ̂M ) = QM+1(ϑ∗M+1)−QM (ϑ∗M ) + op(1).

Because QM+1(ϑ∗M+1) − QM (ϑ∗M ) > 0 by Assumption 4(f), PLRn(M)/n → ∞ as n → ∞. By
Lemma 2, −n−1 ln qn = o(1) and ĉM1−qn − c

M
1−qn = op(1) implies that n−1ĉM1−qn = op(1). Therefore,

when M < M0, we have Pr(PLRn(M) > ĉM1−qn) = Pr(PLRn(M)/n > ĉM1−qn/n)→ 1 as n→∞.
When M = M0, because PLRn(M0) = Op(1) by Proposition 7 and ĉM1−qn → ∞ by qn = o(1),

Pr(PLRn(M0) > ĉM0
1−qn)→ 0 as n→∞.

B Auxiliary results and their proofs

B.1 Lemmas

Lemma 1. For any M <∞, Pr
(
− log n+ `(W i∗ ; Ȳi∗ , s

2
i∗) < M

)
→ 0 as n→∞.

Proof of Lemma 1. Because
∑T
t=1

(Yit−µ)2

s2
i∗

= T − 1 when i = i∗, we have

− log n+ `(W i∗ ; Ȳi∗ , s
2
i∗) = − log n− T

2
log s2

i∗ −
T

2
log(2π)− T − 1

2

= − log
(
Cn(s2

i∗)
T/2
)
, (69)

for some positive constant C.
Therefore, to prove the stated result, it suffices to show that, for any ε > 0, Pr(n(s2

i∗)
T/2 >

ε) → 0 as n → ∞. Given the property of the first-order statistic, the distribution of s2
i∗ is given by

1− [1−FT−1(s)]n, where FT−1(s) is the cumulative distribution function for chi-squared variables
of degree T − 1. It follows that

Pr(n(s2
i∗)

T/2 > ε) = [1− FT−1((ε/n)2/T )]n.

When T = 3, 1 − FT−1(s) = e−s/2 and Pr(n(s2
i∗)

T/2 > ε) = e−Cn
1/3

for some positive constant C
and, therefore, Pr(n(s2

i∗)
T/2 > ε)→ 0 as n→∞, and the stated result follows.
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For general T ≥ 2, write

[
1− FT−1

(
(ε/n)2/T

)]n
=
{[

1− FT−1

(
(ε/n)2/T

)] 1

FT−1((ε/n)2/T )

}nFT−1((ε/n)2/T )

. (70)

Then, because (1− F )
1
F → 1

e when F → 0, the stated result follows from (70) if we can show

FT−1((εx)2/T )

x
→∞ as x→ 0

for x = 1/n. By applying L’Hôpital’s rule, we have

lim
x→0

FT−1((εx)2T )

x
= lim
x→0

fT−1((εx)2/T )ε2Tx2/T−1,

where fk is the PDF of χ-square distribution with k degrees of freedom. Note that fT−1((εx)2/T ) =
1

2(T−1)/2Γ((T−1)/2)
((εx)2/T )(T−1)/2−1e−((εx)2/T )/2, then

lim
x→0

fT−1((εx)2/T )x2/T−1 = lim
x→0

CT,εe
−((εx)2/T )/2x−

1
T =∞,

where CT,ε = ε(T−1)/T

2(T−1)/2Γ((T−1)/2)
, because e−((εx)2/T )/2 → 1 and x−

1
T → ∞ as x → 0 for any finite

T ≥ 2. Therefore, limx→0
FT−1((εx)2T )

x =∞ and the stated result for T ≥ 2 follows from (70).

Lemma 2. Suppose that assumptions in Proposition 10 hold. If−n−1 ln qn = o(1), then n−1cM1−qn = o(1).

Proof. For brevity of notation, write cn = cM1−qn . By Theorem 2.1 of Foutz and Srivastava (1977),

PLRn(M)
d→
∑K
j=1 bjχ

2
j for 0 < bj < ∞ and K is finite, where χ2

1, ..., χ2
K are independent chi-

square random variables with one degree of freedom. Then, we have

qn = Pr

 K∑
j=1

bjχ
2
j ≥ cn

 ≤ K∑
j=1

Pr

(
χ2
j ≥

cn
bj

)
≤ K√

1− 2t
exp

(
−t cn

b∗

)
for 0 < t <

1

2

with b∗ = arg max{b1, ..., bK}, where the last inequality follows from a Chernoff bound:

Pr
(
χ2
j ≥ cn

b∗

)
≤ E[exp(t(χ2

j−1))]

exp(t( cn
b∗ −1))

= 1√
1−2t

exp
(
−t cnb∗

)
for 0 < t < 1

2 . Therefore, − ln qn
n ≥

− 1
n ln

(
K√
1−2t

)
+ 1

2b∗j

cn
n , and the stated result follows.

Lemma 3. Suppose that g(w;ψ, α) is defined as (6), where ψ = (η>,λ>)>. Let g∗, ∇g∗, ∇ log g∗

denote g(W ;ψ, α),∇g(W ;ψ, α), and∇ log g(W ;ψ, α) evaluated at (ψ, α), respectively. Let∇f∗ denote
∇f(W ;γ∗,θ∗). The following statements hold.
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(a) For l = 0, 1, . . . ,∇(λ⊗η⊗l)>g
∗ = 0;

(b) ∇(λ⊗2)>g
∗ = α(1− α)∇(θ⊗2)>f

∗;

(c) E[∇λiλj log g∗] = 0, E[∇λiλjλk log g∗] = 0, and E[∇ηλiλj log g∗] = −E[∇η log g∗∇λiλj log g∗];

(d) E[∇λiλjλkλ` log g∗] = −E[∇λiλj log g∗∇λkλ` log g∗+∇λiλk log g∗∇λjλ` log g∗+∇λiλ` log g∗∇λjλk log g∗].

Proof of Lemma 3. Recall that

g(w;ψ, α) = αf(w;γ,ν + (1− α)λ) + (1− α)f(w;γ,ν − αλ).

First we show that for l = 0 holds for (a),∇λg∗ = α(1−α)∇θf∗−α(1−α)∇θf∗ = 0. For l > 0, by
Fubini’s Theorem, we have

∇(λ⊗2)>g = ∇λ
(
α∇(γ,θ)⊗lf(w;γ,ν + (1− α)λ) + (1− α)∇(γ,θ)⊗lf(w;γ,ν − αλ)

∣∣∣
ν=θ∗,λ=0

)
=
(
α(1− α)∇(γ⊗l,θ⊗l+1)f(w;γ,ν + (1− α)λ)− α(1− α)∇(γ⊗l,θ⊗l+1)f(w;γ,ν − αλ)

∣∣∣
ν=θ∗,λ=0

)
= 0.

To show part (b), note that

∇(λ⊗2)>g = ∇λ
(
α(1− α)∇λ>f(w;γ,ν − α(1− α)λ) + (1− α)∇λ>f(w;γ,ν − αλ)

)
= α(1− α)2∇(λ⊗2)>f(w;γ,ν + α2(1− α)λ) + (1− α)∇(λ⊗2)>f(w;γ,ν − αλ)

∣∣
ν=θ∗,λ=0

= ∇(λ⊗2)>f
∗.

For parts (c) and (d), observe that
∫
∇λi log g(w;ψ, α)g(w;ψ, α)dx = 0 holds for any ψ in the

interior of Θψ , and differentiating this equation w.r.t. λj gives∫
{∇λiλj log g(w;ψ, α) +∇λi log g(w;ψ, α)∇λj log g(w;ψ, α)}g(w;ψ, α)dx = 0. (71)

Evaluating (71) at ψ = ψ∗ in conjunction with part (a) gives the first equation in part (c). Differ-
entiating (71) w.r.t. λk or η and evaluating at ψ = ψ∗ give the latter two equations in part (c). Part
(d) follows from differentiating (71) w.r.t. λk and λ` and evaluating at ψ = ψ∗ in conjunction with
parts (a)(c).

Lemma 4. Suppose that the assumptions of Proposition 8 hold. If ϑh(K)
M0+1(τ0) − ϑh∗M0+1(τ0) = op(1) and

τ (K) − τ0 = op(1), then (a) α(K+1)
m /[α

(K+1)
h + α

(K+1)
h+1 ]− τ0 = op(1) and (b) τ (K+1) − τ0 = op(1).
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Proof. The proof is similar to the proof of Lemma 3 of Chen and Li (2009) and Lemma 10
in Appendix D of Kasahara and Shimotsu (2019). We suppress (τ0) from ϑ

h(K)
M0+1(τ0) and

ϑh∗M0+1(τ0). We suppress Z for brevity. Let fi(γ,θj) and fi(ϑM0+1) denote f(W i;γ,θj) in (2) and
fM0+1(W i;ϑM0+1) in (18), respectively. Applying a Taylor expansion to α(K+1)

h = n−1
∑n
i=1 w

(K)
ih

and using ϑh(K)
M0+1 − ϑ

h∗
M0+1 = op(1), we obtain

α(K+1)
m =

1

n

n∑
i=1

τ (K)(α
(K)
h + α

(K)
h+1)fi(γ

(K),θ
(K)
h )

fi(ϑ
h(K)
M0+1)

=
1

n

n∑
i=1

τ0α
∗
hfi(γ

∗,θ∗h)

fi(ϑ
h∗
M0+1)

+ op(1) = τ0α
∗
h + op(1),

where the last equality follows from E[fi(γ
∗,θ∗h)/fi(ϑ

h∗
M0+1)] = 1 and the law of large numbers. A

similar argument gives α(K+1)
h+1 = (1− τ0)α∗h + op(1), and part (a) follows.

For part (b), define H(τ) :=
∑n
i=1 w

(K)
ih log(τ) +

∑n
i=1 w

(K)
i,h+1 log(1 − τ) = nα

(K+1)
h log(τ) +

nα
(K+1)
h+1 , then τ (K+1) maximizes H(τ) + p(τ). H(τ) is maximized at τ̃ := α

(K+1)
h /(α

(K+1)
h +

α
(K+1)
h+1 ) = (τ0α

∗
h + op(1))/(τ0α

∗
h + (1− τ0)α∗h + op(1)) = τ0 + op(1). Observe that, with τ̄ between

τ (K+1) and τ̃ ,

p(τ̃) ≤ p(τ̃)− p(τ (K+1)) ≤ H(τ (K+1))−H(τ̃) = H ′′(τ̄)(τ (K+1) − τ̃)2, (72)

where the first inequality follows from p(τ) ≤ 0, the second inequality holds because τ (K+1) max-
imizes H(τ) + p(τ), and the last equality follows from expanding H(τ (K+1)) twice around τ̃ and

noting that H ′(τ̃) = 0 because τ̃ maximizes H(τ). Note that H ′′(τ) = −n×
{
α

(K+1)
h

τ2 +
α

(K+1)
h+1

(1−τ)2

}
< 0

and infτ H
′′(τ) ≥ −n(α

(K+1)
h + α

(K+1)
h+1 ). Therefore, in view of τ̃ − τ0 = op(1) and (72), we have

(τ (K+1) − τ̃)2 ≤ p(τ̃)/H ′′(τ̄) = Op(n
−1), and part (b) holds.

B.2 Score function for testing H0 : m = 1 against HA : m = 2

Hj(·) is defined as the j-th order Hermite polynomial. H1(t) = t, H2(t) = t2 − 1 , H3(t) = t3 − 3t,
and H4(t) = t4 − 6t2 + 3. As shown in Kasahara and Shimotsu (2015) supplement material, the
derivative of { 1

σφ( tσ )} is

∇µm∇(σ2)`{ 1
σφ( tσ )}

{ 1
σφ( tσ )}

=

(
1

2

)`(
1

σ

)m+2`

Hm+2`

(
t

σ

)
.
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Let

f∗ = f(w; γ∗, θ∗),∇f∗ = ∇f(w; γ∗, θ∗), Hj∗
i,t =

1

σ∗j!
Hj

(
yit − x>itβ

∗ − z>itγ∗ − µ∗

σ∗

)
, (73)

then the first-order derivatives of the density functions are

∇µf∗ = f∗
T∑
t=1

1

σ
H1∗
i,t ;∇σ2f∗ = f∗

T∑
t=1

1

2

1

σ2
H2∗
it ;

∇βf∗ = f∗
T∑
t=1

1

σ
H1∗
it xit;∇γf∗ = f∗

T∑
t=1

1

σ
H1∗
it zit.

The score function defined in (9) is then written in terms of the Hermite polynomials:

sη =


sµ

sσ

sβ

sγ

 =


∑T
t=1H

1∗
i,t∑T

t=1H
2∗
i,t∑T

t=1H
1∗
i,txit∑T

t=1H
1∗
i,tzit

 , sλλ =



sλµλµ

sλµλσ

sλσλσ

sλµλβ
sλσλβ
sλβλβ


, (74)

where 
sλµµ

sλµσ

sλσσ

sλµβ
sλσβ

 =



∑T
t=1H

2∗
i,t + 1

2

∑T
t=1

∑
s6=tH

1∗
1,i,tH

1∗
i,s

3
∑T
t=1H

3∗
i,t +

∑T
t=1

∑
s6=tH

1∗
i,tH

2∗
i,s

3
∑T
t=1H

4∗
i,t + 1

2

∑T
t=1

∑
s6=tH

2∗
i,tH

2∗
i,t

2
∑T
t=1H

2∗
i,txit +

∑T
t=1

∑
s6=tH

1∗
i,tH

1∗
i,sxit

3
∑T
t=1H

3∗
i,txit + 2

∑T
t=1

∑
s6=tH

1∗
i,tH

2∗
i,sxit

 , and

sλββ =



∑T
t=1H

2∗
i,tx

2
it,1 + 1

2

∑T
t=1

∑
s6=tH

1∗
i,txit,1H

1∗
i,sxis,1

...∑T
t=1H

2∗
i,tx

2
it,q + 1

2

∑T
t=1

∑
s 6=tH

1∗
i,txit,qH

1∗
i,sxis,q

2
∑T
t=1H

2∗
i,txit,1xit,2 +

∑T
t=1

∑
s6=tH

1∗
i,txit,1H

1∗
i,sxis,2

...
2
∑T
t=1H

2∗
i,txit,1xit,q +

∑T
t=1

∑
s6=tH

1∗
i,txit,1H

1∗
i,sxis,q

2
∑T
t=1H

2∗
i,txit,2xit,3 +

∑T
t=1

∑
s6=tH

1∗
i,txit,2H

1∗
i,sxis,3

...
2
∑T
t=1H

2∗
i,txit,q−1xit,q +

∑T
t=1

∑
s6=tH

1∗
i,txit,q−1H

1∗
i,sxis,q



.

(75)
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When T = 1, the score functions are as follow:

sη =


sµ

sσ

sβ

sγ

 =


H1∗
i

H2∗
i

H1∗
i xi

H1∗
i zi

 ,


sλµµ

sλµσ

sλσσ

sλµβ
sλσβ

 =


H2∗
i

3H3∗
i

3H4∗
i

2H2∗
i xi

3H3∗
i xi

 , and sλββ =



H2∗
i x

2
i,1

...
H2∗
i x

2
i,q

2H2∗
i xi,1xi,2

...
2H2∗

i xi,1xi,q

2H2∗
i xi,2xi,3

...
2H2∗

i xi,q−1xi,q



. (76)

Notice that sσ and sλµµ are perfect collinear and, therefore, the Fisher information matrix asso-
ciated with the proposed score function is singular under this reparameterization for data with
T = 1.

B.3 Score function for testing H0 : m = M0 against HA : m = M0 + 1

The derivative of the reparameterized density w.r.t λ at ψh∗τ is zero similar to testing homogeneity
case. With the constraint πM0 = 1 −

∑M0−1
j=1 πj . The score functions sηi’s contain the first-order

derivatives w.r.t π’s γ and ν at ψh∗τ :

∇πj lh(w;ψh∗τ , τ) =
f(w; γ∗, θj∗0 )− f(w; γ∗, θM0∗

0 )∑M0

j=1 α
j∗
0 f(w; γ∗, θj∗0 )

;

∇γ lh(w;ψh∗τ , τ) =

∑M0

j=1 α
j∗
0 ∇γf(w; γ∗, θj∗0 )∑M0

j=1 α
j∗
0 f(w; γ∗, θj∗0 )

;

∇ν lh(w;ψh∗τ , τ) =
∇θf(w; γ∗, θh∗0 )∑M0

j=1 α
j∗
0 f(w; γ∗, θj∗0 )

.

(77)

Define Hb∗
j,i,t as an abridged expression for 1

b!
1
σ∗0
Hb(

yit−µj∗0 −x
′
itβ

j∗
0 −z

′
itγ
∗

σj∗0
). Define the weight wj∗i

as

wj∗i =
αj∗0 f({W it}Tt=1; γ∗, θj∗0 )

fM0
({W it}Tt=1;ϑ∗M0

)
, j = 1, . . . ,M0,

where fM0
({W it}Tt=1;ϑ∗M0

) is defined by equation (17).
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As shown in section B.3, the score functions are:

sα(wi) =


f(w|θ1∗0 )−f(w|θM0∗

0 )∑
l α

l∗
0 f(w|θl∗0 )

...
f(w|θM0−1∗

0 )−f(w|θM0∗
0 )∑

l α
l∗
0 f({W ∗it}Tt=1|θl∗0 )

 , sµ(wi) =


w1∗
i

∑T
t=1H

1∗
1,i,t

...
wM0∗
i

∑T
t=1H

1∗
M0,i,t

 , sβ(wi) =


w1∗
i

∑T
t=1H

1∗
1,i,txit

...
wM0∗
i

∑T
t=1H

1∗
M0,i,t

xit

 ,

sσ(wi) =


w1∗
i

∑T
t=1H

2∗
1,i,t

...
wM0∗
i

∑T
t=1H

2∗
M0,i,t

 , sγ(wi) =


w1∗
i

∑T
t=1H

1∗
1,i,tzit

...
wM0∗
i

∑T
t=1H

1∗
M0,i,t

zit

 .

The score function for shλλ is obtained analogously to sλλ by replacing Hb∗
i,t with Hb∗

h,i,t for b =

1, .., 4 so that

shλµσ (wi) = wh∗i



∑T
t=1H

2∗
h,i,t + 1

2

∑T
t=1

∑
s6=tH

1∗
h,i,tH

1∗
h,i,s

3
∑T
t=1H

4∗
h,i,t + 1

2

∑T
t=1

∑
s 6=tH

2∗
h,i,tH

2∗
h,i,t

3
∑T
t=1H

3∗
h,i,t +

∑T
t=1

∑
s6=tH

1∗
h,i,tH

2∗
h,i,s

2
∑T
t=1H

2∗
h,i,txit +

∑T
t=1

∑
s6=tH

1∗
h,i,txitH

1∗
h,i,s

3
∑T
t=1H

3∗
h,i,txit + 2

∑T
t=1

∑
s6=tH

1∗
h,i,txitH

2∗
h,i,s

 ,

shλβ (wi) = wh∗i



∑T
t=1H

2∗
h,i,tx

2
it,1 + 1

2

∑T
t=1

∑
s 6=tH

1∗
h,i,txit,1H

1∗
h,i,sxis,1

...∑T
t=1H

2∗
h,i,tx

2
it,q + 1

2

∑T
t=1

∑
s6=tH

1∗
h,i,txit,qH

1∗
h,i,sxis,q

2
∑T
t=1H

2∗
h,i,txit,1xit,2 +

∑T
t=1

∑
s6=tH

1∗
h,i,txit,1H

1∗
h,i,sxis,2

...
2
∑T
t=1H

2∗
h,i,txit,1xit,q +

∑T
t=1

∑
s6=tH

1∗
h,i,txit,1H

1∗
h,i,sxis,q

2
∑T
t=1H

2∗
h,i,txit,2xit,3 +

∑T
t=1

∑
s6=tH

1∗
h,i,txit,2H

1∗
h,i,sxis,3

...
2
∑T
t=1H

2∗
h,i,txit,q−1xit,q +

∑T
t=1

∑
s6=tH

1∗
h,i,txit,q−1H

1∗
h,i,sxis,q



.
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B.4 How to simulate the asymptotic distribution

C Other tables

Table 11: Parameter specification for null models with M0 = 1, 2, 3, 4

M0 = 1

N {100, 500}
T {2, 5, 10}
an (0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4)

M0 = 2

N {100, 500}
T {2, 5, 10}
α {(0.5, 0.5); (0.2, 0.8)}
µ {(−1, 1), (−0.5, 0.5), (−0.8, 0.8)}
σ {(1, 1), (1.5, 0.75), (0.8, 1.2)}
an (0.01, 0.05, 0.1, 0.2, 0.3, 0.4)

M0 = 3

N {100, 500}
T {2, 10}
α {(1/3, 1/3, 1/3); (0.25, 0.5, 0.25)}
µ {(−4, 0, 4); (−4, 0, 5); (−5, 0, 5); (−4, 0, 6); (−5, 0, 6); (−6, 0, 6)}
σ {(1, 1, 1); (0.75, 1.5, 0.75)}
an (0.01, 0.05, 0.1, 0.2, 0.3, 0.4)

M0 = 4

N {100, 500}
T {2, 10}
α {(0.25, 0.25, 0.25, 0.25)}
µ {(−4,−1, 1, 4); (−5,−1, 1, 5); (−6,−2, 2, 6); (−6,−1, 2, 5); (−5, 0, 2, 4); (−6, 0, 2, 4)}
σ {(1, 1, 1, 1); (1, 0.75, 0.5, 0.25)}
an (0.01, 0.05, 0.1, 0.2, 0.3, 0.4)
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Table 12: The estimated an-function based on the simulated nominal size

Dependent variable

log
(

ŝ
1−ŝ

)
− log

(
0.05

1−0.05

)
(1) (2) (3) (4)

1/T 0.776∗∗∗ −0.288∗∗∗ 0.611∗∗∗ 0.258∗∗∗

(0.238) (0.074) (0.050) (0.087)

1/N 28.143∗∗∗ 4.637 21.156∗∗∗ 8.585∗∗

(10.127) (3.124) (2.524) (4.334)

log
(

an
1−an

)
−0.016 −0.101∗∗∗ −0.111∗∗∗ −0.128∗∗∗

(0.019) (0.009) (0.007) (0.030)

log
(

ω(ϑM0
;M0)

1−ω(ϑM0
;M0)

)
−0.197∗∗∗ 0.002 −0.013∗∗∗

(0.029) (0.006) (0.003)

Constant −0.616∗∗∗ −0.811∗∗∗ −0.680∗∗∗ −0.735∗∗∗

(0.113) (0.047) (0.060) (0.068)

Observations 48 648 576 288

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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